Skip to main content
Log in

Analytical, FEA, and experimental research of 2D-Vibration Assisted Cutting (2D-VAC) in titanium alloy Ti6Al4V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the 2D-Vibration Assisted Cutting (2D-VAC) method, the cutting tool shakes in a 2-dimensional approach because of superimposed high-frequency modulation. This high-frequency modulation effect creates a displacement at a tiny scale of micrometers and causes an escalation in the resultant cutting speed. Consequently, 2D-VAC has superior advantages compared to traditional cutting (TC). This manuscript describes research on 2D-VAC that focuses on modeling cutting forces (mathematical model) and finite element analysis (FEA) results. The FEA results are focused on the von Mises stress, plastic strain, cutting force, cutting temperature, and residual stress. In addition, an experiment for the chip formation, micro-structure layer, and micro-hardness was also analyzed in this study. According to the modeling results, the cutting force has a comparable pattern to the FEA results. The stress contour result confirms that the 2D-VAC method has lower stress than that in the TC method during tool retraction mode. Additionally, the plastic strain in the 2D-VAC method can be higher than that in the TC method. According to the temperature results, the peak temperature in the 2D-VAC could be higher than that in the TC method. The residual stress shows that there is a compressive effect. Thus, the compressive stress is higher than that in the TC method. Micro-hardness results confirmed that there is not too much change from the original surface in the 2D-VAC method. The result of micro-structure morphology also confirmed that there is a significant shear deformation flow in case of the TC method, although less occurs in the 2D-VAC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Not available.

Abbreviations

x e(t):

The tool movement in x-direction at the CC-point as function of time

y e(t):

The tool movement in y-direction at the CC-point as function of time

a m :

The elliptical locus magnitude in x-direction

b m :

The elliptical locus magnitude in y-direction

f v :

The frequency vibration of the tool movement in Hz

φ :

The phase difference between cosine wave in radian

t :

The time in second

V c :

The constant cutting speed of the cutting tool in μm/s

f :

The feed rate, μm/rev

r e :

The cutting edge radius in μm

θ t(t):

The slope angle of the tool movement

V x(t):

The velocity vector of the tool movement in x-direction

V y(t):

The velocity vector of the tool movement in y-direction

V t(t):

The transient tool velocity

TOC t (t) :

The transient thickness of cut as function of time

TOC max :

The maximum of transient thickness of cut

t A :

Tool engaging time at the point A

t A′:

Tool engaging time in previous cycle at the point A

t D :

Tool disengaging time at the point D

t P :

Toll disengaging time in the previous one-cycle at point P

t T :

Tool engaging time lies between the point A and B

ϕ s(t):

Transient shear angle as function of time

ϕ kc :

The constant shear angle of the CC-like process

ϕ kr :

The constant shear angle of the kinetic reverse process

β:

The friction angle

αo :

The constant rake angle

ε(t):

The transient shear strain

\( \dot{\varepsilon}(t) \) :

The transient shear strain rate

∆d:

The thickness between two sequences segmented chip

∆s:

The elongation of workpiece material during shear deformation

τ s(t):

The modified Johnson-Cook flow stress

A, B, C, n, m :

The constant Johnson-Cook parameters

F s(t):

The transient shear force

F R(t):

The transient resultant force

F c(t):

The transient principal force

F t(t):

The transient thrust force

References

  1. Lu M, Chen B, Zhao D, Zhou J, Lin J, Yi A, Wang H (2018) Chatter identification of three-dimensional elliptical vibration cutting process based on empirical mode decomposition and feature extraction. Appl. Sci. 9:21. https://doi.org/10.3390/app9010021

    Article  Google Scholar 

  2. Zhang SJ, S. To, Zhang GQ, Zhu ZW (2015) A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 91:34–42. https://doi.org/10.1016/j.ijmachtools.2015.01.005

    Article  Google Scholar 

  3. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int. J. Mach. Tools Manuf. 156:103594. https://doi.org/10.1016/j.ijmachtools.2020.103594

    Article  Google Scholar 

  4. Ning F, Cong W (2020) Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives. J. Manuf. Process. 51:174–190. https://doi.org/10.1016/j.jmapro.2020.01.028

    Article  Google Scholar 

  5. Zhang J, Cui T, Ge C, Sui Y, Yang H (2016) Review of micro/nano machining by utilizing elliptical vibration cutting. Int. J. Mach. Tools Manuf. 106:109–126. https://doi.org/10.1016/j.ijmachtools.2016.04.008

    Article  Google Scholar 

  6. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51:363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  7. Otto A, Radons G (2013) Application of spindle speed variation for chatter suppression in turning. CIRP J. Manuf. Sci. Technol. 6:102–109. https://doi.org/10.1016/j.cirpj.2013.02.002

    Article  Google Scholar 

  8. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 51:250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  9. Liang X, Liu Z, Wang B (2019) State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review. Meas. J. Int. Meas. Confed. 132:150–181. https://doi.org/10.1016/j.measurement.2018.09.045

    Article  Google Scholar 

  10. Yang D, Liu Z, Ren X, Zhuang P (2016) Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V. Int. J. Mech. Sci. 108–109:29–38. https://doi.org/10.1016/j.ijmecsci.2016.01.027

    Article  Google Scholar 

  11. Rao CM, Rao SS, Herbert MA (2018) Development of novel cutting tool with a micro-hole pattern on PCD insert in machining of titanium alloy. J. Manuf. Process. 36:93–103. https://doi.org/10.1016/j.jmapro.2018.09.028

    Article  Google Scholar 

  12. Muhammad R, Hussain MS, Maurotto A, Siemers C, Roy A, Silberschmidt VV (2014) Analysis of a free machining α+β titanium alloy using conventional and ultrasonically assisted turning. J. Mater. Process. Technol. 214:906–915. https://doi.org/10.1016/j.jmatprotec.2013.12.002

    Article  Google Scholar 

  13. Zang J, Zhao J, Li A, Pang J (2018) Serrated chip formation mechanism analysis for machining of titanium alloy Ti-6Al-4V based on thermal property. Int. J. Adv. Manuf. Technol. 98:119–127. https://doi.org/10.1007/s00170-017-0451-6

    Article  Google Scholar 

  14. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int. J. Mach. Tools Manuf. 48:275–288. https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  15. Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int. J. Mach. Tools Manuf. 50:943–960. https://doi.org/10.1016/j.ijmachtools.2010.08.004

    Article  Google Scholar 

  16. Kurniawan R, Kumaran ST, Ali S, Nurcahyaningsih DA, Kiswanto G, Ko TJ (2018) Experimental and analytical study of ultrasonic elliptical vibration cutting on AISI 1045 for sustainable machining of round-shaped microgroove pattern. Int. J. Adv. Manuf. Technol. 98:2031–2055. https://doi.org/10.1007/s00170-018-2359-1

    Article  Google Scholar 

  17. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann. - Manuf. Technol. 43:35–38. https://doi.org/10.1016/S0007-8506(07)62158-1

    Article  Google Scholar 

  18. Tan R, Zhao X, Guo S, Zou X, He Y, Geng Y, Hu Z, Sun T (2020) Sustainable production of dry-ultra-precision machining of Ti–6Al–4V alloy using PCD tool under ultrasonic elliptical vibration-assisted cutting. J. Clean. Prod. 248:119254. https://doi.org/10.1016/j.jclepro.2019.119254

    Article  Google Scholar 

  19. Wang Q, Wu Y, Gu J, Lu D, Ji Y, Nomura M (2016) Fundamental machining characteristics of the in-base-plane ultrasonic elliptical vibration assisted turning of Inconel 718. Procedia CIRP. 42:858–862. https://doi.org/10.1016/j.procir.2016.03.008

    Article  Google Scholar 

  20. Zhang J, Han L, Zhang J, Liu H, Yan Y, Sun T (2019) Brittle-to-ductile transition in elliptical vibration-assisted diamond cutting of reaction-bonded silicon carbide. J. Manuf. Process. 45:670–681. https://doi.org/10.1016/j.jmapro.2019.08.005

    Article  Google Scholar 

  21. Kurniawan R, Kiswanto G, Ko TJ (2016) Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. Int. J. Mach. Tools Manuf. 106:127–140. https://doi.org/10.1016/j.ijmachtools.2016.03.007

    Article  Google Scholar 

  22. Yang Y, Pan Y, Guo P (2017) Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing. Appl. Surf. Sci. 402:400–409. https://doi.org/10.1016/j.apsusc.2017.01.026

    Article  Google Scholar 

  23. Hosseinabadi HN, Sajjady SA, Amini S (2018) Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning. Int. J. Adv. Manuf. Technol. 96:2825–2839. https://doi.org/10.1007/s00170-018-1580-2

    Article  Google Scholar 

  24. Zhang X, Kumar AS, Rahman M, Nath C, Liu K (2012) An analytical force model for orthogonal elliptical vibration cutting technique. J. Manuf. Process 14:378–387. https://doi.org/10.1016/j.jmapro.2012.05.006

    Article  Google Scholar 

  25. Kurniawan R, Kiswanto G, Ko TJ (2017) Surface roughness of two-frequency elliptical vibration texturing (TFEVT) method for micro-dimple pattern process. Int. J. Mach. Tools Manuf. 116:77–95. https://doi.org/10.1016/j.ijmachtools.2016.12.011

    Article  Google Scholar 

  26. Kong C, Wang D (2018) Numerical investigation of the performance of elliptical vibration cutting in machining of AISI 1045 steel. Int. J. Adv. Manuf. Technol. 98:715–727. https://doi.org/10.1007/s00170-018-2277-2

    Article  Google Scholar 

  27. Xie H, Wang Z (2019) Study of cutting forces using FE, ANOVA, and BPNN in elliptical vibration cutting of titanium alloy Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 105:5105–5120. https://doi.org/10.1007/s00170-019-04537-w

    Article  Google Scholar 

  28. Liang Y, Li D, Bai Q, Wang S, Chen M (2006) Molecular dynamics simulation of elliptical vibration cutting, Proc. 1st IEEE Int. Conf. Nano Micro Eng. Mol. Syst. 1st IEEE-NEMS. 635–638. 10.1109/NEMS.2006.334862.

  29. Lotfi M, Amini S, Akbari J (2020) Surface integrity and microstructure changes in 3D elliptical ultrasonic assisted turning of Ti–6Al–4V: FEM and experimental examination. Tribol. Int. 106492:106492. https://doi.org/10.1016/j.triboint.2020.106492

    Article  Google Scholar 

  30. Zhang J, Wang D (2019) Investigations of tangential ultrasonic vibration turning of Ti6Al4V using finite element method. Int. J. Mater. Form. 12:257–267. https://doi.org/10.1007/s12289-018-1402-y

    Article  Google Scholar 

  31. Zhang X, Kumar AS, Rahman M, Liu K (2013) Modeling of the effect of tool edge radius on surface generation in elliptical vibration cutting. Int. J. Adv. Manuf. Technol 65, 35:–42. https://doi.org/10.1007/s00170-012-4146-8

  32. Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int. J. Adv. Manuf. Technol. 83:1025–1036. https://doi.org/10.1007/s00170-015-7645-6

    Article  Google Scholar 

  33. Jieqiong L, Jinguo H, Xiaoqin Z, Zhaopeng H, Mingming L (2016) Study on predictive model of cutting force and geometry parameters for oblique elliptical vibration cutting. Int. J. Mech. Sci. 117:43–52. https://doi.org/10.1016/j.ijmecsci.2016.08.004

    Article  Google Scholar 

  34. Shaw M (1984) Metal cutting principles, 1984, 1st edn. Oxford University Press, United States https://scholar.google.pt/scholar?q=metal+cutting+principles&btnG=&hl=pt-PT&as_sdt=0,5#3

    Google Scholar 

  35. Mamedov A, Lazoglu I (2016) Thermal analysis of micro milling titanium alloy Ti-6Al-4V. J. Mater. Process. Technol. 229:659–667. https://doi.org/10.1016/j.jmatprotec.2015.10.019

    Article  Google Scholar 

  36. Kolli RP, Devaraj A (2018) A review of metastable beta titanium alloys. Metals (Basel). 8:1–41. https://doi.org/10.3390/met8070506

    Article  Google Scholar 

  37. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J. Mater. Process. Technol 209:2223–2230. https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  38. Li C, Xu M, Yu Z, Huang L, Li S, Li P, Niu Q, Ko TJ (2020) Electrical discharge-assisted milling for machining titanium alloy. J. Mater. Process. Technol. 285:116785. https://doi.org/10.1016/j.jmatprotec.2020.116785

    Article  Google Scholar 

  39. Ali S, Kurniawan R, Ko TJ (2021) Development of 3D resonant elliptical vibration transducer for dual-frequency micro-dimple surface texturing, Int. J. Precis. Eng. Manuf. https://doi.org/10.1007/s12541-021-00551-9.

  40. Vignjevic R, Djordjevic N, De Vuyst T, Gemkow S (2018) Modelling of strain softening materials based on equivalent damage force. Comput. Methods Appl. Mech. Eng. 335:52–68. https://doi.org/10.1016/j.cma.2018.01.049

    Article  MathSciNet  MATH  Google Scholar 

  41. Kurniawan R, Kumaran ST, Ko TJ (2021) Finite element analysis in ultrasonic elliptical vibration cutting (UEVC) during micro-grooving in AISI 1045, Int. J. Precis. Eng. Manuf. https://doi.org/10.1007/s12541-021-00554-6.

  42. Kurniawan R, Ko TJ (2015) Friction reduction on cylindrical surfaces by texturing with a piezoelectric actuated tool holder. Int. J. Precis. Eng. Manuf. 16:861–868. https://doi.org/10.1007/s12541-015-0113-2

    Article  Google Scholar 

  43. Müller B, Renz U, Hoppe S, Klocke F (2004) Radiation thermometry at a high-speed turning process. J. Manuf. Sci. Eng. Trans. ASME. 126:488–495. https://doi.org/10.1115/1.1763188

    Article  Google Scholar 

Download references

Code availability

Not available.

Funding

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning [Grant Number NRF-2020R1A2B5B02001755].

Author information

Authors and Affiliations

Authors

Contributions

Rendi Kurniawan: Writing – original draft, Methodology, Conceptualization, Investigation, Formal Analysis.

Farooq Ahmed: Resources.

Saood Ali: Resources.

Gun Chul Park: Validation.

Tae Jo Ko: Writing – review & editing, Supervision, Project Administration.

Corresponding author

Correspondence to Tae Jo Ko.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurniawan, R., Ahmed, F., Ali, S. et al. Analytical, FEA, and experimental research of 2D-Vibration Assisted Cutting (2D-VAC) in titanium alloy Ti6Al4V. Int J Adv Manuf Technol 117, 1739–1764 (2021). https://doi.org/10.1007/s00170-021-07831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07831-8

Keywords

Navigation