Skip to main content
Log in

A review of tool wear mechanism and suppression method in diamond turning of ferrous materials

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In ultra-precision machining of ferrous materials, diamond tools are easy to graphitize due to chemical reactions with ferrous materials, which can cause severe tool wear. The sharpness of the original cutting edge therefore cannot be maintained to machine mirror-level surface roughness. It cannot through a high-efficiency and low-cost way to obtain the workpiece surface integrity with high quality. Studying the wear mechanism of diamond tools and wear suppression methods is very important to improve the cutting efficiency of ultra-precision machining. In the present research, wear mechanisms and suppression schemes in diamond tools turning ferrous materials are reviewed and focusing on three major wear mechanisms and four effective suppression methods. In the end, this paper discusses the magnetism property of diamond-turnable materials, and introduces the feasibility of the magnetic field-assisted scheme to suppress diamond tool wear (DTW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Yuan JL, Lyu BH, Hang W, Deng QF (2017) Review on the progress of ultra-precision machining technologies. Front Mech Eng 12(2):158–180. https://doi.org/10.1007/s11465-017-0455-9

    Article  Google Scholar 

  2. Yuan JL, Wang ZW, Wen DH, Lv BH, Dai Y (2007) Review of the status of ultra-precision machining. Aust J Mech Eng 43(1):35–48. https://doi.org/10.3321/j.issn:0577-6686.2007.01.006 (in Chinese)

    Article  Google Scholar 

  3. Wang XK, Wu D, Liu CY (1999) Review of precision and ultra-precision machining technology. Chinese. Mech Eng 10(5):3–5 CNKI:SUN:ZGJX.0.1999-05-026. (in Chinese)

    Google Scholar 

  4. Davies MA, Evans CJ, Patterson SR, Vohra R, Bergner BC (2003) Application of precision diamond machining to the manufacture of micro-photonics components. Proc SPIE 5(183):94–108. https://doi.org/10.1117/12.506373

    Article  Google Scholar 

  5. Fu Y (2007) Research on precision diamonf cutting of ferrous metals. Harbin Inst Technol:45–50 (in Chinese)

  6. Zhou F, Yu AB, Wang CC (2003) The research development of metal-bonded diamond wheels dressing technology. Precis Manufac Auto 2:12. https://doi.org/10.16371/j.cnki.issn1009-962x.2003.02.005 (in Chinese)

    Article  Google Scholar 

  7. Ikawa N, Donaldson RR, Komanduri R, König W, Aachen TH, McKeown PA, Moriwaki T, Stowers IF (1991) Ultraprecision metal cutting—the past, the present and the future. CIRP Ann 40(2):587–594. https://doi.org/10.1016/s0007-8506(07)61134-2

    Article  Google Scholar 

  8. Cheung CF, Lee WB (2001) Characterisation of nanosurface generation in single-point diamond turning. Int J Mach Tool Manu 41(6):851–875. https://doi.org/10.1016/S0890-6955(00)00102-4

    Article  Google Scholar 

  9. Xiao XX, Zhong ZM (1984) Diamond tools for ultra-precision cutting. Aeronaut Manufac Technol 02:9–14 (in Chinese)

    Google Scholar 

  10. Hatefi S, Abou-El-Hossein K (2019) Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. Int J Adv Manuf Technol 106(5-6):2167–2187. https://doi.org/10.1007/s00170-019-04700-3

    Article  Google Scholar 

  11. Wang XK (2000) Precision and ultra-precision technology. Machin Metal Cut 008:3–4 (in Chinese)

    Google Scholar 

  12. Yu J, Cao JL (1992) Nano-level optical ultra-precision processing technology. Physical 12:726–731 http://ir.ciomp.ac.cn/handle/181722/32364 (in Chinese)

    Google Scholar 

  13. Lee YJ, Hao L, Luder J, Chaudhari A, Wang SY, Manzhos S, Wang H (2019) Micromachining of ferrous metal with an ion implanted diamond cutting tool. Carbon 152:598–608. https://doi.org/10.1016/j.carbon.2019.06.043

    Article  Google Scholar 

  14. Huang R, Zhang XQ, Neo WK, Kumar AS, Liu K (2018) Ultra-precision machining of grayscale pixelated micro images on metal surface. Prec Eng-J Int Soc Pre Eng Nanotechnol 52:211–220. https://doi.org/10.1016/j.precisioneng.2017.12.009

    Article  Google Scholar 

  15. Jiang JK, Luo T, Zhang GQ, Dai YQ (2021) Novel tool offset fly cutting straight-groove-type micro structure arrays. J Mater Process Technol 288:116900. https://doi.org/10.1016/j.jmatprotec.2020.116900

    Article  Google Scholar 

  16. Cheng K, Huo DH (2013) Micro-cutting: fundamentals and applications. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781118536605

    Book  Google Scholar 

  17. Berman LE, Hastings JB, Siddons DP, Koike M, Stojanoff V, Hart M (1993) Diamond crystal X-ray optics for high-power-density synchrotron radiation beams. Nuclear Instr Meth Physics Res Sec a-Acceler Spectromet Detect Assoc Equip 329(3):555–563. https://doi.org/10.1016/0168-9002(93)91291-T

    Article  Google Scholar 

  18. Mildren RP, Butler JE, Rabeau JR (2008) CVD-diamond external cavity Raman laser at 573 nm. Opt Express 16(23):18950–18955. https://doi.org/10.1364/oe.16.018950

    Article  Google Scholar 

  19. Nebel CE, Rezek B, Shin D (2008) Electrochemical properties of undoped diamond. Wiley-VCH Verlag GmbH & Co, Hoboken

    Book  Google Scholar 

  20. Yuan S, Guo XG, Jin MJ, Kang RK, Guo DM (2020) Research status on chemical mechanical polishing of diamond. Surf Technol 49(4):11–22. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.04.002 (in Chinese)

    Article  Google Scholar 

  21. Malshe AP, Park BS, Brown WD, Naseem HA (1999) A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates. Diam Relat Mater 8(7):1198–1213. https://doi.org/10.1016/S0925-9635(99)00088-6

    Article  Google Scholar 

  22. Zhang QL, Zhao QL, To S, Guo B, Zhai WJ (2017) Diamond wheel wear mechanism and its impact on the surface generation in parallel diamond grinding of RB-SiC/Si. Diam Relat Mater 74:16–23. https://doi.org/10.1016/j.diamond.2017.01.019

    Article  Google Scholar 

  23. Chon KS, Namba Y, Yoon KH (2007) Single-point diamond turning of aspheric mirror with inner reflecting surfaces. Key Eng Mater 364-366:39–42. https://doi.org/10.4028/www.scientific.net/KEM.364-366.39

    Article  Google Scholar 

  24. Fang FZ, Venkatesh VC, Zhang GX (2002) Diamond turning of soft semiconductors to obtain nanometric mirror surfaces. Int J Adv Manuf Technol 19(9):637–641. https://doi.org/10.1007/s001700200107

    Article  Google Scholar 

  25. Moriwaki T (1995) Experimental analysis of ultraprecision machining. Int J Japan Soc Prec Eng 29(4):287–290

    Google Scholar 

  26. Oomen JM, Eisses J (1992) Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precis Eng 14(4):206–218. https://doi.org/10.1016/0141-6359(92)90018-R

    Article  Google Scholar 

  27. Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polavani RS (1996) Chemical aspects of tool wear in single point diamond turning. Prec Eng-J Int Soc Pre Eng Nanotechnol 18(1):4–19. https://doi.org/10.1016/0141-6359(95)00019-4

    Article  Google Scholar 

  28. Pramanik A, Neo KS, Rahman M, Li XP, Sawa M, Maeda Y (2008) Ultraprecision turning of electroless nickel: effects of crystal orientation and origin of diamond tools. Int J Adv Manuf Technol 43(7-8):681–689. https://doi.org/10.1007/s00170-008-1748-2

    Article  Google Scholar 

  29. Uddin AS, Seah KHW, Rahman M, Li XP, Liu K (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Process Technol 185(1-3):24–30. https://doi.org/10.1016/j.jmatprotec.2006.03.138

    Article  Google Scholar 

  30. Zou L, Yin JC, Huang Y, Zhou M (2018) Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals. Diam Relat Mater 86:29–40. https://doi.org/10.1016/j.diamond.2018.04.012

    Article  Google Scholar 

  31. Pramanik A, Neo KS, Rahman A, Li XP, Sawa M, Maeda Y (2003) Cutting performance of diamond tools during ultra-precision turning of electroless-nickel plated die materials. J Mater Process Technol 140(1-3):308–313. https://doi.org/10.1016/S0924-0136(03)00751-9

    Article  Google Scholar 

  32. Brinksmeier E, Gläbe R (2007) Diamond machining of steel molds for optical applications. Key Eng Mater 364-366:701–706. https://doi.org/10.4028/www.scientific.net/KEM.364-366.701

    Article  Google Scholar 

  33. Lu HY (2003) Discussion on wear mechanism of diamond tool. Machine Manufac 1:38–39. https://doi.org/10.3969/j.issn.1000-4998.2003.01.018 (in Chinese)

    Article  Google Scholar 

  34. Komanduri R, Shaw MC (1975) Wear of synthetic diamond when grinding ferrous-metals. Nature 255(5505):211–213. https://doi.org/10.1038/255211a0

    Article  Google Scholar 

  35. Evans C, Bryan JB (1991) Cryogenic diamond turning of stainless steel. CIRP Ann 40(1):571–575. https://doi.org/10.1016/s0007-8506(07)62056-3

    Article  Google Scholar 

  36. Thornton AG, Wilks J (1980) The wear of diamond tools turning mild-steel. Wear 65(1):67–74. https://doi.org/10.1016/0043-1648(80)90009-5

    Article  Google Scholar 

  37. Gimenez S, Van der Biest O, Vleugels J (2007) The role of chemical wear in machining iron based materials by PCD and PCBN super-hard tool materials. Diam Relat Mater 16(3):435–445. https://doi.org/10.1016/j.diamond.2006.08.017

    Article  Google Scholar 

  38. Zou L (2015) Study on wear and inhibition of black metal diamond cutting tools. Harbin Institute of Technology Doctor, Harbin, pp 25–27 (in Chinese)

    Google Scholar 

  39. Thornton AG, Wilks J (1978) Clean surface-reactions between diamond and steel. Nature 274(5673):792–793. https://doi.org/10.1038/274792a0

    Article  Google Scholar 

  40. Zhang XQ, Liu K, Kumar AS, Rahman M (2014) A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel. J Mater Process Technol 214(2):496–506. https://doi.org/10.1016/j.jmatprotec.2013.10.002

    Article  Google Scholar 

  41. Narulkar R, Bukkapatnam S, Raff LM, Komanduri R (2009) Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci 45(2):358–366. https://doi.org/10.1016/j.commatsci.2008.10.007

    Article  Google Scholar 

  42. Guo XG, Zhai CH, Jin ZJ, Guo DM (2015) The study of diamond graphitization under the action of iron-based catalyst. Aust J Mech Eng 51(17):162. https://doi.org/10.3901/jme.2015.17.162

    Article  Google Scholar 

  43. Guo XG, Liu T, Zhai CH, Yuan ZW, Jin ZJ (2016) Study on the mechanism of diamond graphite with the action of transition metals. Aust J Mech Eng 52(20):23. https://doi.org/10.3901/jme.2016.20.023

    Article  Google Scholar 

  44. Guo J, Zhang JG, Kang RK, Namba Y, Guo DM (2020) A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals. Int J Extreme Manufac 2(1):012001. https://doi.org/10.1088/2631-7990/ab5d8f

    Article  Google Scholar 

  45. Ikawa N, Tanaka T (1971) Thermal aspects of wear of diamond grain in grinding. Annal CIRP 19(1):153–157

    Google Scholar 

  46. Komanduri R, Shaw MC (1976) On the diffusion wear of diamond in grinding pure iron. Philos Mag 34(2):195–204. https://doi.org/10.1080/14786437608221935

    Article  Google Scholar 

  47. Narulkar R, Bukkapatnam S, Raff LM, Komanduri R (2008) Molecular dynamics simulations of diffusion of carbon into iron. Philos Mag 88(8):1259–1275. https://doi.org/10.1080/14786430802123232

    Article  Google Scholar 

  48. Hitchiner MP, Wilks J (1984) Factors affecting chemical wear during machining. Wear 93(1):63–80. https://doi.org/10.1016/0043-1648(84)90178-9

    Article  Google Scholar 

  49. Tanaka H, Shimada S, Ikawa N, Yoshinaga M (2001) Wear mechanism of diamond cutting tool in machining of steel. Prec Machin Adv Mater 196:69–78. https://doi.org/10.4028/www.scientific.net/KEM.196.69

    Article  Google Scholar 

  50. Thornton AG, Wilks J (1979) Tool wear and solid-state reactions during machining. Wear 53(1):165–187. https://doi.org/10.1016/0043-1648(79)90226-6

    Article  Google Scholar 

  51. Casstevens JM (1982) Diamond turning of steel in a carbon-saturated atmosphere. NASA STI/Recon Techn Rep N 5(1):9–15. https://doi.org/10.1016/0141-6359(83)90063-6

    Article  Google Scholar 

  52. Brinksmeier E (1999) Single point diamond turning of steel. Proc euspen 628

  53. Zhang XQ, Huang R, Liu K, Kumar AS, Deng H (2018) Suppression of diamond tool wear in machining of tungsten carbide by combining ultrasonic vibration and electrochemical processing. Ceram Int 44(4):4142–4153. https://doi.org/10.1016/j.ceramint.2017.11.215

    Article  Google Scholar 

  54. Shamoto E, Suzuki N (2014) Ultrasonic vibration diamond cutting and ultrasonic elliptical vibration cutting, pp 405–454. https://doi.org/10.1016/b978-0-08-096532-1.01111-0

    Book  Google Scholar 

  55. Yip WS, To S (2018) Sustainable manufacturing of ultra-precision machining of titanium alloys using a magnetic field and its sustainability assessment. Sustain Mater Technol 16:38–46. https://doi.org/10.1016/j.susmat.2018.04.002

    Article  Google Scholar 

  56. Ge YF, Xu JH, Yang H (2010) Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear 269(11-12):699–708. https://doi.org/10.1016/j.wear.2009.09.002

    Article  Google Scholar 

  57. Ohta T, Yan JW, Yajima S, Takahashi Y, Horikawa N, Kuriyagawa T (2007) High-efficiency machining of single-crystal germanium using large-radius diamond tools. Int J Surf Sci Eng 1(4):374–392. https://doi.org/10.1504/Ijsurfse.2007.016691

    Article  Google Scholar 

  58. Durazo-Cardenas I, Shore P, Luo X, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262(3-4):340–349. https://doi.org/10.1016/j.wear.2006.05.022

    Article  Google Scholar 

  59. Yuan ZJ, Yao YX, Zhou M, Bai QS (2003) Lapping of single crystal diamond tools. Cirp Annal-Manufac Technol 52(1):285–288. https://doi.org/10.1016/S0007-8506(07)60585-X

    Article  Google Scholar 

  60. Zong WJ, Sun T, Li D, Cheng K (2009) Design criterion for crystal orientation of diamond cutting tool. Diam Relat Mater 18(4):642–650. https://doi.org/10.1016/j.diamond.2008.11.003

    Article  Google Scholar 

  61. Zong WJ, Li ZQ, Sun T, Cheng K, Li D, Dong S (2010) The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int J Mach Tool Manu 50(4):411–419. https://doi.org/10.1016/j.ijmachtools.2009.10.015

    Article  Google Scholar 

  62. Hurt HH, Decker DL (1984) Tribological considerations of the diamond single-point tool, vol 0508, p 126. https://doi.org/10.1117/12.944971

    Book  Google Scholar 

  63. Zong WJ, Li ZQ, Sun T, Li D, Cheng K (2010) Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment. J Mater Process Technol 210(6-7):858–867. https://doi.org/10.1016/j.jmatprotec.2010.01.018

    Article  Google Scholar 

  64. Seal M (1963) The effect of surface orientation on the graphitization of diamond. Phys Status Solidi 3(4):658–664. https://doi.org/10.1002/pssb.19630030408

    Article  Google Scholar 

  65. Jin ZJ, Xie F, Guo XG, Shi SJ (2016) Wear mechanism of single crystal diamond tool against mold steel by molecular dynamics simulation. Nanotechnology and. Precis Eng 14(6):410–415. https://doi.org/10.13494/j.npe.20160021

    Article  Google Scholar 

  66. Bai Q, Wang Z, Guo Y, Chen J, Shang Y (2018) Graphitization behavior of single crystal diamond for the application in nano-metric cutting. Curr Nanosci 14(5):377–383. https://doi.org/10.2174/1573413714666180517080721

    Article  Google Scholar 

  67. Yuan ZW, Jin ZJ, Kang RK, Wen Q (2012) Tribochemical polishing CVD diamond film with FeNiCr alloy polishing plate prepared by MA-HPS technique. Diam Relat Mater 21:50–57. https://doi.org/10.1016/j.diamond.2011.10.015

    Article  Google Scholar 

  68. Yuan ZJ, He JC (1992) Natural diamond tool crystal selection on cutting deformation and machining surface quality. Tool Technol 26(11):28–31 CNKI:SUN:GJJS.0.1992-11-019. (in Chinese)

  69. Zhou M, Yuan ZJ (1999) The selection of crystal surface of diamond tool affects the cutting process and durability. J Harbin Inst Technol 31(4):78–79. https://doi.org/10.1088/0256-307X/15/8/013 (in Chinese)

  70. Zhang JH (1985) Precision cutting theory and technology. Shanghai Science and Technology Press, Shanghai, pp 139–151 (in Chinese)

    Google Scholar 

  71. Grodzinski P (1953) Diamond technology: production methods for diamond and gem stones. N A G Press, New York

    Google Scholar 

  72. Li ZQ, Han JC, Sun T, Zong WJ, Dong S (2011) Periodic bond chain model for estimation of the anisotropy of diamond cutting tools. Nanotechnol Preci Eng 9(2):176–179. https://doi.org/10.3969/j.issn.1672-6030.2011.02.015 (in Chinese)

    Article  Google Scholar 

  73. Hitchiner MP, Wilks J (1987) Some remarks on the chemical wear of diamond and cubic Bn during turning and grinding. Wear 114(3):327–338. https://doi.org/10.1016/0043-1648(87)90120-7

    Article  Google Scholar 

  74. Lata S, Rana R, Hitesh (2018) Investigation of chip-tool interface temperature: effect of machining parameters and tool material on ferrous and non-ferrous metal. Mater Today: Proc 5(2):4250–4257. https://doi.org/10.1016/j.matpr.2017.11.689

    Article  Google Scholar 

  75. Graham W, Nee A (1974) The grinding of tool steels with a diamond abrasive wheel. Int J Machine Tool Design Res 14(2):175–185. https://doi.org/10.1016/0020-7357(74)90025-0

    Article  Google Scholar 

  76. Graham W, Nee A (1974) The grinding of tool steels—a comparison between diamond and cubic boron nitride. Prod Des Eng 53(6):186. https://doi.org/10.1049/tpe.1974.0055

    Article  Google Scholar 

  77. Zhao QL, Chen MJ, Liang YC, Dong S (2002) Wear analysis of single crystal diamond turning tool in ultra-precise single point cutting. J Tribol 5:2–8. https://doi.org/10.3321/j.issn:1004-0595.2002.05.001 (in Chinese)

    Article  Google Scholar 

  78. Inada A, Min S, Ohmori H (2011) Micro cutting of ferrous materials using diamond tool under ionized coolant with carbon particles. Cirp Annal-Manufac Technol 60(1):97–100. https://doi.org/10.1016/j.cirp.2011.03.089

    Article  Google Scholar 

  79. Inada A, Min S, Dornfeld D, Ohmori H (2008) Effects of ion-shot coolant system on cutting of the ferrous material with a diamond tool. Proceedings of IMETI2008. Orlando 2:13–17

    Google Scholar 

  80. Inada A, Ohmori H, Min S, Dornfeld D (2010) Investigation of the effects of an electrolytic coolant with a nano carbon additive in diamond micro cutting on ferrous materials. J Adv Mech Design Syst Manufac 4(5):1076–1083. https://doi.org/10.1299/jamdsm.4.1076

    Article  Google Scholar 

  81. Zhou MH, Zhang GQ, Chen N (2020) Effects of lubricant on cutting performance in single-point diamond turning of ferrous metal NAK 80. Int J Adv Manuf Technol 109(9-12):2549–2558. https://doi.org/10.1007/s00170-020-05826-5

    Article  Google Scholar 

  82. Li JN, Yuan ZJ (1987) Study on ultrafine cutting property of diamond in ferrous metal. J Harbin Inst Technol 1:138–139 CNKI:SUN:HEBX.0.1987-01-022. (in Chinese)

  83. Li JN, Yuan ZJ (1989) Ultra-low temperature diamond ultra-precision cutting of ferrous metal. Aust J Mech Eng 25(1):69–72 (in Chinese)

  84. Zhang G (2007) Method for extending diamond tool life in diamond machining of materials that chemically react with diamond. US Patent 7:198,043

    Google Scholar 

  85. Fang F, Zhang H, Qiu Z, Tang X (2010) A method for the suppression of single crystal diamond tool wear in ultra-precision machining by the action of multiple physical fields. China. Patent CN101817694A,

  86. Evans T, Sauter DH (1961) Etching of diamond surfaces with gases. Philos Mag 6(63):429-&. https://doi.org/10.1080/14786436108235896

    Article  Google Scholar 

  87. Simons EL, Cannon P (1966) A means of increasing the oxidation resistance of diamond. Nature 210(5031):90–91

    Article  Google Scholar 

  88. Arnold JB, Morris TO, Sladky RE, Steger PJ (1977) Machinability studies of infrared window materials and metals. Opt Eng 16(4):164324

    Google Scholar 

  89. Vennemann A, Stock HR, Kohlscheen J, Vorgel E, Mayr P (2003) New diamond turnable coatings of ternary systems for ultraprecision cutting. Surf Coat Technol 174:973–978. https://doi.org/10.1016/S0257-8972(03)00536-X

    Article  Google Scholar 

  90. Brinksmeier E, Glab R, Osmer J (2006) Ultra-precision diamond cutting of steel molds. Cirp Annal-Manufac Technol 55(1):551–554. https://doi.org/10.1016/S0007-8506(07)60480-6

    Article  Google Scholar 

  91. Osmer J, Glabe R, Riemer O, Brinksmeier E, Butepage S, Hoffmann F (2009) Diamond milling of nitrided steels for optical mold making. J Vac Sci Technol B 27(3):1238–1240. https://doi.org/10.1116/1.3049512

    Article  Google Scholar 

  92. Brinksmeier E, Gläbe R, Osmer J (2010) Diamond cutting of FeN-layers on steel substrates for optical mould making. Key Eng Mater 438:31–34. https://doi.org/10.4028/www.scientific.net/KEM.438.31

    Article  Google Scholar 

  93. Brinksmeier E, Glaebe R, Osmer J (2011) Surface integrity demands of high precision optical molds and realization by a new process chain. 1st Cirp Conf Surf Integr 19:40–43. https://doi.org/10.1016/j.proeng.2011.11.077

    Article  Google Scholar 

  94. Wang YL, Zhao QL, Shang YJ, Lv PX, Guo B, Zhao LL (2011) Ultra-precision machining of Fresnel microstructure on die steel using single crystal diamond tool. J Mater Process Technol 211(12):2152–2159. https://doi.org/10.1016/j.jmatprotec.2011.07.018

    Article  Google Scholar 

  95. Dai TF, Fang FZ, Hu XT (2009) Tool wear study in diamond turning of steels. J Vacuum ence Technol B Microelectron Nanometer Struct 27(3):1335–1339. https://doi.org/10.1116/1.3049516

    Article  Google Scholar 

  96. Saito H, Jung HJ, Shamoto E, Hara Y, Hara T (2020) Suppression of tool damage in ultraprecision diamond machining of stainless steel by applying electron-beam-excited plasma nitriding. Prec Eng-J Int Soc Pre Eng Nanotechnol 63:126–136. https://doi.org/10.1016/j.precisioneng.2020.01.005

    Article  Google Scholar 

  97. Stock HR, Schlett V, Kohlscheen J, Mayr P (2001) Characterization and mechanical properties of ion-implanted diamond surfaces. Surf Coat Technol 146:425–429. https://doi.org/10.1016/S0257-8972(01)01479-7

    Article  Google Scholar 

  98. Zhang GL (1985) Ion implantation of diamond dies. Wire Indust 52(617):314–317

    Google Scholar 

  99. Picraux ST (1982) Metastable materials formation by ion implantation. In: Surface Engineering North-Holland New York

    Google Scholar 

  100. Brinksmeier E, Glabe R (2001) Advances in precision machining of steel. Cirp Annal-Manufac Technol 50(1):385–388. https://doi.org/10.1016/S0007-8506(07)62146-5

    Article  Google Scholar 

  101. Lee YJ, Shen YK, Wang H (2020) Suppression of polycrystalline diamond tool wear with mechanochemical effects in micromachining of ferrous metal. J Manufac Mater Proc 4(3):81. https://doi.org/10.3390/jmmp4030081

    Article  Google Scholar 

  102. Klocke F, Krieg T (1999) Coated tools for metal cutting—features and applications. CIRP Ann 48(2):515–525. https://doi.org/10.1016/s0007-8506(07)63231-4

    Article  Google Scholar 

  103. Dong J, Mehner A, Gläbe R, Hoffmann F, Mayr P, Brinksmeier E (2004) Schutz von Diamantwerkzeugen vor chemischem Verschleiß. HTM Härtereitech Mitt 59(4):284–290. https://doi.org/10.3139/105.100299

    Article  Google Scholar 

  104. Belmonte M, Ferro P, Fernandes AJS, Costa FM, Sacramento J, Silva RF (2003) Wear resistant CVD diamond tools for turning of sintered hardmetals. Diam Relat Mater 12(3-7):738–743. https://doi.org/10.1016/S0925-9635(02)00302-3

    Article  Google Scholar 

  105. Ginting A, Skein R, Cuaca D, Herdianto P, Masyithah Z (2018) The characteristics of CVD- and PVD-coated carbide tools in hard turning of AISI 4340. Measurement 129:548–557. https://doi.org/10.1016/j.measurement.2018.07.072

    Article  Google Scholar 

  106. Yuan ZW, Jin ZJ, Ma XW, Dong BX (2009) Fabrication and characterization of FeNiCr Matrix-TiC composite for polishing CVD diamond film. J Mater Sci Technol 25(03):319–324

    Google Scholar 

  107. Liew WYH (2009) Experimental study on the performance of coated carbide tools in the ultra-precision machining of stainless steel. Tribol Trans 52(3):293–302. https://doi.org/10.1080/10402000802302508

    Article  Google Scholar 

  108. Ghani AK, Choudhury IA, Husni (2002) Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool. J Mater Process Technol 127(1):17–22. https://doi.org/10.1016/S0924-0136(02)00092-4

    Article  Google Scholar 

  109. Aslan E, Camuscu N, Birgoren B (2007) Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3+TiCN mixed ceramic tool. Mater Des 28(5):1618–1622. https://doi.org/10.1016/j.matdes.2006.02.006

    Article  Google Scholar 

  110. Zhao J, Yuan XL, Zhou YH (2010) Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro- nano-composite ceramic tool. Int J Refract Met Hard Mater 28(3):330–337. https://doi.org/10.1016/j.ijrmhm.2009.11.007

    Article  Google Scholar 

  111. Fujisaki K, Yokota H, Furushiro N, Yamagata Y, Taniguchi T, Himeno R, Makinouchi A, Higuchi T (2009) Development of ultra-fine-grain binderless cBN tool for precision cutting of ferrous materials. J Mater Process Technol 209(15-16):5646–5652. https://doi.org/10.1016/j.jmatprotec.2009.05.023

    Article  Google Scholar 

  112. Neo KS, Rahman M, Li XP, Khoo HH, Sawa M, Maeda Y (2003) Performance evaluation of pure CBN tools for machining of steel. J Mater Process Technol 140(1-3):326–331. https://doi.org/10.1016/S0924-0136(03)00746-5

    Article  Google Scholar 

  113. Nishiguchi T, Masuda M (1988) Precision cutting of ferrous metals with single crystal CBN cutting tools. J JSPE 54(2):384. https://doi.org/10.2493/jjspe.54.384

    Article  Google Scholar 

  114. Moriwanki T, Mukai T (1990) Machinability of CBN tools in precision machining of stainless steel. Inst Eng Aust 95:129

    Google Scholar 

  115. Chou YK, Evans CJ (1997) Tool wear mechanism in continuous cutting of hardened tool steels. Wear 212(1):59–65. https://doi.org/10.1016/S0043-1648(97)00139-7

    Article  Google Scholar 

  116. Knuefermann M, Read R, Nunn R, Clark I, Fleming A (2000) Ultraprazisionsbearbeitung geharteter Stahlbauteile mit Amborite DBN45. IDR 34(3):222–230

    Google Scholar 

  117. Dosbaeva GK, El Hakim MA, Shalaby MA, Krzanowski JE, Veldhuis SC (2015) Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int J Refract Met Hard Mater 50:1–8. https://doi.org/10.1016/j.ijrmhm.2014.11.001

    Article  Google Scholar 

  118. Hatefi S, Abou-El-Hossein K (2020) Review of non-conventional technologies for assisting ultra-precision single-point diamond turning. Int J Adv Manuf Technol 111(9-10):2667–2685. https://doi.org/10.1007/s00170-020-06240-7

    Article  Google Scholar 

  119. Gaidys R, Dambon O, Ostasevicius V, Dicke C, Narijauskaite B (2017) Ultrasonic tooling system design and development for single point diamond turning (SPDT) of ferrous metals. Int J Adv Manuf Technol 93(5-8):2841–2854. https://doi.org/10.1007/s00170-017-0657-7

    Article  Google Scholar 

  120. Jung HJ, Hayasaka T, Shamoto E (2018) Elliptical vibration cutting for difficult-to-cut materials, pp 1–43. https://doi.org/10.1007/978-981-10-6588-0_5-2

    Book  Google Scholar 

  121. Zhang JG, Suzuki N, Shamoto E (2019) Advanced applications of elliptical vibration cutting in micro/nanomachining of difficult-to-cut materials, pp 167–200. https://doi.org/10.1007/978-981-13-3335-4_7

    Book  Google Scholar 

  122. Kurniawan R, Kumaran ST, Ali S, Nurcahyaningsih DA, Kiswanto G, Ko TJ (2018) Experimental and analytical study of ultrasonic elliptical vibration cutting on AISI 1045 for sustainable machining of round-shaped microgroove pattern. Int J Adv Manuf Technol 98(5-8):2031–2055. https://doi.org/10.1007/s00170-018-2359-1

    Article  Google Scholar 

  123. Bai W, Sun RL, Gao Y, Leopold J (2015) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83(5-8):1025–1036. https://doi.org/10.1007/s00170-015-7645-6

    Article  Google Scholar 

  124. Geng D, Zhang D, Li Z, Liu D (2017) Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics 75:80–90. https://doi.org/10.1016/j.ultras.2016.11.011

    Article  Google Scholar 

  125. Chen JB, Fang QH, Wang CC, Du JK, Liu F (2016) Theoretical study on brittle–ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precis Eng 46:104–117. https://doi.org/10.1016/j.precisioneng.2016.04.005

    Article  Google Scholar 

  126. Saito H, Jung H, Shamoto E, Wu TC, Chien JT (2017) Mirror surface machining of high-alloy steels by elliptical vibration cutting with single-crystalline diamond tools: influence of alloy elements on diamond tool damage. Prec Eng-J Int Soc Pre Eng Nanotechnol 49:200–210. https://doi.org/10.1016/j.precisioneng.2017.02.008

  127. Liu DF, Yan RM, Chen T (2017) Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials. Int J Adv Manuf Technol 92(1-4):81–99. https://doi.org/10.1007/s00170-017-0081-z

    Article  Google Scholar 

  128. Zhang JG, Cui T, Ge C, Sui YX, Yang HJ (2016) Review of micro/nano machining by utilizing elliptical vibration cutting. Int J Mach Tool Manu 106:109–126. https://doi.org/10.1016/j.ijmachtools.2016.04.008

    Article  Google Scholar 

  129. Jung HJ, Hayasaka T, Shamoto E (2018) Study on process monitoring of elliptical vibration cutting by utilizing internal data in ultrasonic elliptical vibration device. Int J Prec Eng Manufac-Green Technol 5(5):571–581. https://doi.org/10.1007/s40684-018-0059-9

    Article  Google Scholar 

  130. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann 43(1):35–38. https://doi.org/10.1016/s0007-8506(07)62158-1

    Article  Google Scholar 

  131. Shamoto E, Suzuki N, Tsuchiya E, Hori Y, Inagaki H, Yoshino K (2005) Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. Cirp Annal-Manufac Technol 54(1):321–324. https://doi.org/10.1016/S0007-8506(07)60113-9

    Article  Google Scholar 

  132. Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann 40(1):559–562. https://doi.org/10.1016/s0007-8506(07)62053-8

    Article  Google Scholar 

  133. Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann 44(1):31–34. https://doi.org/10.1016/s0007-8506(07)62269-0

    Article  Google Scholar 

  134. Shamoto E, Moriwaki T (1999) Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann 48(1):441–444. https://doi.org/10.1016/s0007-8506(07)63222-3

    Article  Google Scholar 

  135. Zang DY, Liu YH, Geng DX, Jiang XG (2019) Research progress of ultrasonic processing technology. Electroform Mold 5:1–10 CNKI:SUN:DJGU.0.2019-05-001. (in Chinese)

    Google Scholar 

  136. Sui H, Zhang XY, Zhang DY, Jiang XG, Wu RBA (2017) Feasibility study of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol 247:111–120. https://doi.org/10.1016/j.jmatprotec.2017.03.017

    Article  Google Scholar 

  137. Zhang XY, Sui H, Zhang DY, Jiang XG (2018) An analytical transient cutting force model of high-speed ultrasonic vibration cutting. Int J Adv Manuf Technol 95(9-12):3929–3941. https://doi.org/10.1007/s00170-017-1499-z

    Article  Google Scholar 

  138. Cerniway MA (2002) Elliptical diamond milling: kinematics, force and tool wear.

  139. Jin M, Murakawa M (2001) Development of a practical ultrasonic vibration cutting tool system. J Mater Process Technol 113(1-3):342–347. https://doi.org/10.1016/S0924-0136(01)00649-5

    Article  Google Scholar 

  140. Kim HS, Kim SI, Lee KI, Lee DH, Bang YB, Lee KI (2009) Development of a programmable vibration cutting tool for diamond turning of hardened mold steels. Int J Adv Manuf Technol 40(1-2):26–40. https://doi.org/10.1007/s00170-007-1311-6

    Article  Google Scholar 

  141. Overcash JL, Cuttino JF (2009) Design and experimental results of a tunable vibration turning device operating at ultrasonic frequencies. Prec Eng-J Int Soc Pre Eng Nanotechnol 33(2):127–134. https://doi.org/10.1016/j.precisioneng.2008.04.006

    Article  Google Scholar 

  142. Moriwaki T (2010) Development of 2DOF ultrasonic vibration cutting device for ultraprecision elliptical vibration cutting. Adv Prec Eng 447-448:164–168. https://doi.org/10.4028/www.scientific.net/KEM.447-448.164

    Article  Google Scholar 

  143. Klocke F, Olaf D, Benjamin B 2011, Tooling system for diamond turning of hardened steel moulds with apsheric or non rotational symmetrical geometries. In: Proceedings of the 11th International Euspen Conference, Como, Italy

  144. Ammouri AH, Hamade RF (2011) BUEVA: a bi-directional ultrasonic elliptical vibration actuator for micromachining. Int J Adv Manuf Technol 58(9-12):991–1001. https://doi.org/10.1007/s00170-011-3463-7

    Article  Google Scholar 

  145. Tan RK, Zhao XS, Zou XC, Sun T (2018) A novel ultrasonic elliptical vibration cutting device based on a sandwiched and symmetrical structure. Int J Adv Manuf Technol 97(1-4):1397–1406. https://doi.org/10.1007/s00170-018-2015-9

    Article  Google Scholar 

  146. Yin Z, Fu YC, Xu JH, Li H, Cao ZY, Chen YR (2016) A novel single driven ultrasonic elliptical vibration cutting device. Int J Adv Manuf Technol 90(9-12):3289–3300. https://doi.org/10.1007/s00170-016-9641-x

    Article  Google Scholar 

  147. Xu WX, Zhang LC (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3(3):173–192. https://doi.org/10.1007/s40436-015-0115-4

    Article  Google Scholar 

  148. Pan Y, Kang R, Dong ZG, Du WH, Yin S, Bao Y (2020) On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning. J Intell Manuf. https://doi.org/10.1007/s10845-020-01669-9

  149. Lin J, Lu M, Zhou X (2016) Development of a non-resonant 3D elliptical vibration cutting apparatus for diamond turning. Exp Tech 40(1):173–183. https://doi.org/10.1007/s40799-016-0021-0

    Article  Google Scholar 

  150. Zhou M, Eow YT, Ngoi BKA, Lim EN (2003) Vibration-assisted precision machining of steel with PCD tools. Mater Manuf Process 18(5):825–834. https://doi.org/10.1081/Amp-120024978

    Article  Google Scholar 

  151. Babitsky VI, Mitrofanov AV, Silberschmidt VV (2004) Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42(1-9):81–86. https://doi.org/10.1016/j.ultras.2004.02.001

    Article  Google Scholar 

  152. Ma CX, Shamoto E, Moriwaki T, Wang LJ (2004) Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tool Manu 44(12-13):1305–1310. https://doi.org/10.1016/j.ijmachtools.2004.04.014

    Article  Google Scholar 

  153. Ma CX, Shamoto E, Moriwaki T (2004) Study on the thrust cutting force in ultrasonic elliptical vibration cutting. Mater Sci Forum 471-472:396–400. https://doi.org/10.4028/www.scientific.net/MSF.471-472.396

    Article  Google Scholar 

  154. Zhang YL, Zhou ZM, Xia ZH (2005) Research on the influence of vibration parameters on diamond cutting stainless steel parts. J Dalian Univ Technol 45(6):819–822. https://doi.org/10.3321/j.issn:1000-8608.2005.06.009

    Article  Google Scholar 

  155. Mitrofanov AV, Ahmed N, Babitsky VI, Silberschmidt VV (2005) Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Process Technol 162:649–654. https://doi.org/10.1016/j.jmatprotec.2005.02.170

    Article  Google Scholar 

  156. Lu ZS, Yang L (2006) Research and simulation of the influence of ultrasonic vibration cutting frequency on cutting force. Aviat Precis Manufac Technol 05:10–14. https://doi.org/10.3969/j.issn.1003-5451.2006.05.003 (in Chinese)

    Article  Google Scholar 

  157. Ahmed N, Mitrofanov AV, Babitsky VI, Silberschmidt VV (2007) 3D finite element analysis of ultrasonically assisted turning. Comput Mater Sci 39(1):149–154. https://doi.org/10.1016/j.commatsci.2005.12.045

    Article  Google Scholar 

  158. Fang FZ, Wang L (2008) Cutting of tool steels under ultrasonic vibration. Modern manufacturing engineering. Modern. Manuf Eng 11:54–58. https://doi.org/10.3969/j.issn.1671-3133.2008.11.016 (in Chinese)

    Article  Google Scholar 

  159. Wang L (2008) Study on ultrasonic assisted vibration diamond mirror cutting technology for carbon steel. Tianjin University, Tianjin, pp 40–50. https://doi.org/10.7666/d.y1531255 (in Chinese)

    Book  Google Scholar 

  160. Zhou ZM, Zhang YL, Dong J, Li XY (2009) Effect of cutting parameters on diamond tool life during cutting stainless steel. Mater Sci Forum 626-627:99–104. https://doi.org/10.4028/www.scientific.net/MSF.626-627.99

    Article  Google Scholar 

  161. Overcash JL, Cuttino JF (2009) In-process modeling of dynamic tool-tip temperatures of a tunable vibration turning device operating at ultrasonic frequencies. Prec Eng-J Int Soc Pre Eng Nanotechnol 33(4):505–515. https://doi.org/10.1016/j.precisioneng.2009.02.001

    Article  Google Scholar 

  162. Song YC, Nezu K, Park CH, Moriwaki T (2009) Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method. Int J Mach Tool Manu 49(3-4):339–343. https://doi.org/10.1016/j.ijmachtools.2008.10.014

    Article  Google Scholar 

  163. Shi XH, Li Z, Shao H (2010) Analysis of ultrasonic vibration-assisted turning temperature field. Tool Eng 7:45–48 CNKI:SUN:GJJS.0.2010-07-017. (in Chinese)

    Google Scholar 

  164. Zhang XQ, Senthil KA, Rahman M, Nath C, Liu K (2012) An analytical force model for orthogonal elliptical vibration cutting technique. J Manuf Process 14(3):378–387. https://doi.org/10.1016/j.jmapro.2012.05.006

    Article  Google Scholar 

  165. Jiao F, Liang Z, Yu L, ChongYang Z, Ying N (2013) The tool wear mechanism of ultrasonic vibration cutting and its effect on the surface roughness of workpiece. J S Univ Sci Technol 32(4):449–453. https://doi.org/10.3969/j.issn.1673-9787.2013.04.014 (in Chinese)

    Article  Google Scholar 

  166. Zhang YL, Zhou ZM, Lv Y, Wang JL, Shao L, Lqbal A (2013) Wear behavior of natural diamond tool in cutting tungsten-based alloy. Int J Adv Manuf Technol 69(1-4):329–335. https://doi.org/10.1007/s00170-013-5045-3

    Article  Google Scholar 

  167. Hatefi S, Abou-El-Hossein K (2020) Review of hybrid methods and advanced technologies for in-process metrology in ultra-high-precision single-point diamond turning. Int J Adv Manuf Technol 111(1-2):427–447. https://doi.org/10.1007/s00170-020-06106-y

    Article  Google Scholar 

  168. Zhang YL, Zhou ZM, Hhuang CY, Xia ZH (2004) Study on vibration and gas-protected cutting technology of natural diamond. Mech Sci Technol 3:339–340. https://doi.org/10.3321/j.issn:1003-8728.2004.03.028

    Article  Google Scholar 

  169. Li ZJ (2013) Study on the technology and mechanism of ultra-precision cutting black metal. Tianjin University, Tianjin

    Google Scholar 

  170. Tang QC, Yin SH, Chen FJ, Huang S, Luo H (2018) New technology for cutting ferrous metal with diamond tools. Diam Relat Mater 88:32–42. https://doi.org/10.1016/j.diamond.2018.06.022

    Article  Google Scholar 

  171. Huang S, Liu X, Chen FZ, Zheng HX, Yang XL, Wu LB, Song JL, Xu WJ (2016) Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration. Int J Adv Manuf Technol 85(1-4):673–681. https://doi.org/10.1007/s00170-015-7912-6

    Article  Google Scholar 

  172. Zhang XQ, Senthil KA, Rahman M, Nath C, Liu K (2011) Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools. J Mater Process Technol 211(11):1701–1709. https://doi.org/10.1016/j.jmatprotec.2011.05.015

    Article  Google Scholar 

  173. Li GG, Rahim MZ, Pan WC, Wen C, Ding SL (2020) The manufacturing and the application of polycrystalline diamond tools—a comprehensive review. J Manuf Process 56:400–416. https://doi.org/10.1016/j.jmapro.2020.05.010

    Article  Google Scholar 

  174. Zhang XQ, Deng H, Liu K, Wang H (2017) Effect of air blow pressure in ultrasonic vibration cutting of steel using PCD tools. Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN:123-124

  175. Zhang XQ, Deng H, Liu K (2019) Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools. CIRP Ann 68(1):69–72. https://doi.org/10.1016/j.cirp.2019.04.026

    Article  Google Scholar 

  176. Saito H, Jung HJ, Shamoto E (2016) Elliptical vibration cutting of hardened die steel with coated carbide tools. Precis Eng 45:44–54. https://doi.org/10.1016/j.precisioneng.2016.01.004

    Article  Google Scholar 

  177. Wang JS, Fang FZ, Yan GP, Guo YB (2019) Study on diamond cutting of ion implanted tungsten carbide with and without ultrasonic vibration. Nanomanufac Metrol 2(3):177–185. https://doi.org/10.1007/s41871-019-00042-6

    Article  Google Scholar 

  178. Willert M, Zielinski T, Rickens K, Riemer O, Karpuschewski B (2020) Impact of ultrasonic assisted cutting of steel on surface integrity. Proc CIRP 87:222–227. https://doi.org/10.1016/j.procir.2020.02.009

  179. Yip WS, To S (2017) Reduction of material swelling and recovery of titanium alloys in diamond cutting by magnetic field assistance. J Alloys Compd 722:525–531. https://doi.org/10.1016/j.jallcom.2017.06.167

    Article  Google Scholar 

  180. Yip WS, To S (2017) An application of eddy current damping effect on single point diamond turning of titanium alloys. J Phys D-Appl Phys 50(43):435002. https://doi.org/10.1088/1361-6463/aa86fc

    Article  Google Scholar 

  181. Yip WS, To S (2017) Tool life enhancement in dry diamond turning of titanium alloys using an eddy current damping and a magnetic field for sustainable manufacturing. J Clean Prod 168:929–939. https://doi.org/10.1016/j.jclepro.2017.09.100

    Article  Google Scholar 

  182. Yip WS, To S (2019) Reduction of tool tip vibration in single-point diamond turning using an eddy current damping effect. Int J Adv Manuf Technol 103(5-8):1799–1809. https://doi.org/10.1007/s00170-019-03457-z

    Article  Google Scholar 

  183. Xiao C (1987) The effect of magnetic fields on chemical reactions. J Lishui Univ s1:51 (in Chinese)

    Google Scholar 

  184. Jiang BZ, Yang JM (1991) The effect of magnetic fields on certain chemical reactions. Chemistry 10:13–17 CNKI:SUN:HXTB.0.1991-10-002

    Google Scholar 

  185. Kipriyanov AA, Purtov PA (2012) Magnetic field effects on chemical reactions near the disturbance of stationary states conditions. Chaotic Model Simul 1:53–65

    Google Scholar 

  186. Rodgers CT (2009) Magnetic field effects in chemical systems. Pure Appl Chem 81(1):19–43. https://doi.org/10.1351/Pac-Con-08-10-18

    Article  Google Scholar 

  187. Cheng H (1989) Magnetic fields affect chemical reactions. Chemistry 5:35–38 (in Chinese)

    Google Scholar 

  188. Li SY, Zhu JZ (2000) Development of ultra-precision manufacturing and its key technologies. China Mech Eng 11:177–179. https://doi.org/10.3321/j.issn:1004-132X.2000.01.044 (in Chinese)

    Article  Google Scholar 

  189. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Prec Eng-J Int Soc Pre Eng Nanotechnol 32(3):153–172. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  190. Kumar J, Negi VS, Chattopadhyay KD, Sarepaka RV, Sinha RK (2017) Thermal effects in single point diamond turning: analysis, modeling and experimental study. Measurement 102:96–105. https://doi.org/10.1016/j.measurement.2017.01.046

    Article  Google Scholar 

Download references

Acknowledgements

The research proposed in this paper was supported by the National Natural Science Foundation of China (Grant No. U2013603, 51827901), and the Shenzhen Peacock Technology Innovation Project (Grant No. KQJSCX20170727101318462).

Author information

Authors and Affiliations

Authors

Contributions

Guoqing Zhang contributed to the paper structures and did the final proofreading; Jianpeng Wang collated paper data and was responsible for writing the paper; Ning Chen and Menghua Zhou provided literatures. Yanbing Chen offered suggestions when revised the manuscript. All authors contributed to the general discussions.

Corresponding author

Correspondence to Guoqing Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors have approved to participate.

Consent for publication

The manuscript is approved by all authors for publication.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, G., Chen, N. et al. A review of tool wear mechanism and suppression method in diamond turning of ferrous materials. Int J Adv Manuf Technol 113, 3027–3055 (2021). https://doi.org/10.1007/s00170-021-06700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06700-8

Keywords

Navigation