Skip to main content
Log in

Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An ultrashort pulse laser, capable of varying the pulse duration from 0.2 ps up to 10 ps, is used to study the ablation characteristics of stainless steel and cemented tungsten carbide. In addition to the influence of pulse duration, the number of pulses and the wavelength are examined for their influence on the ablation process. By determining the ablation diameter of generated cavities, the ablation threshold of the materials is calculated as a function of the number of pulses, the pulse duration, and the wavelength. The experimentally determined ablation thresholds tend to agree with calculated values. Due to the incubation effect, the ablation threshold decreases with increasing the number of pulses. In this context, the incubation factor (0.81@1030 nm and 0.80@515 nm for stainless steel, 0.90@1030 nm and 0.77@515 nm for cemented tungsten carbide) for the investigated materials is determined. On the basis of the measured ablated volume, the effective penetration depth (a reduction in a range from about 12 nm and 15 nm to 6 nm for stainless steel and in a range from 22 nm and 32 nm to 11 nm and 13 nm for cemented tungsten carbide by increasing the pulse duration from 0.2 ps to 10 ps) of the energy is calculated and it is proven that in the femtosecond regime the penetration depth increases compared with the picosecond regime. In consequence, the efficiency of the ablation process is increased by using shorter laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Neuenschwander B, Jaeggi B, Schmid M, Rouffiange V, Martin PE (2012) Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII (International Society for Optics and Photonics), vol 8243, p 824307

  2. Schille J, Loeschner U, Ebert R, Scully P, Goddard N, Exner H (2010) Laser micro processing using a high repetition rate femtosecond laser. In: 29th International Congress on Application of Laser & Electro-Optics, ICALEO, California, USA, paper, vol 189

  3. Raciukaitis G, Brikas M, Gecys P, Gedvilas M (2008) Accumulation effects in laser ablation of metals with high-repetition-rate lasers. In: High-Power Laser Ablation VII (International Society for Optics and Photonics), vol 7005, p 70052L

  4. Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63(2):109

    Article  Google Scholar 

  5. Shaheen M, Gagnon J, Fryer B (2013) Laser ablation of iron: a comparison between femtosecond and picosecond laser pulses. J Appl Phys 114(8):083110

    Article  Google Scholar 

  6. Qi Y, Qi H, Chen A, Hu Z (2014) Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser. Applied Surface Science 317:252

    Article  Google Scholar 

  7. Schille J (2013) Investigation of micromachining using a high repetition rate femtosecond fibre laser. Ph.D. thesis, The University of Manchester (United Kingdom)

  8. Jee Y, Becker M F, Walser R M (1988) Laser-induced damage on single-crystal metal surfaces. JOSA B 5(3):648

    Article  Google Scholar 

  9. Chen F, Du G, Yang Q, Si J, Hou H (2011) Ultrafast heating characteristics in multi-layer metal film assembly under femtosecond laser pulses irradiation. Two Phase Flow, Phase Change and Numerical Modeling, pp 239

  10. Rethfeld B, Ivanov DS, Garcia ME, Anisimov SI (2017) Modelling ultrafast laser ablation. J Phys D: Appl Phys 50(19):193001

    Article  Google Scholar 

  11. Huang J, Zhang Y, Chen J (2010) Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness. Numerical Heat Transfer, Part A:, Applications 57(12):893

    Article  Google Scholar 

  12. Wellershoff S S, Hohlfeld J, Güdde J, Matthias E (1999) The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A 69(1):S99

    Google Scholar 

  13. Le Harzic R, Breitling D, Weikert M, Sommer S, Föhl C, Valette S, Donnet C, Audouard E, Dausinger F (2005) Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. Appl Surf Sci 249(1-4):322

    Article  Google Scholar 

  14. Miyasaka Y, Hashida M, Nishii T, Inoue S, Sakabe S (2015) Derivation of effective penetration depth of femtosecond laser pulses in metal from ablation rate dependence on laser fluence, incidence angle, and polarization. Appld Phys Lett 106(1):013101

    Article  Google Scholar 

  15. Furmanski J, Rubenchik A, Shirk M, Stuart B (2007) Deterministic processing of alumina with ultrashort laser pulses. J Appld Phys 102(7):073112

    Article  Google Scholar 

  16. Liu J (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Optics Letters 7(5):196

    Article  Google Scholar 

  17. Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P (2010) Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates. Appl Phys A 101(1):97

    Article  Google Scholar 

  18. Stuart B C, Feit M D, Herman S, Rubenchik A M, Shore B W, Perry M D (1996) Optical ablation by high-power short-pulse lasers. JOSA B 13(2):459

    Article  Google Scholar 

  19. Mourou G A, Du D, Dutta S K, Elner V, Kurtz R, Lichter P R, Liu X, Pronko P P, Squier JA (1997) Method for controlling configuration of laser induced breakdown and ablation (1997). US Patent 5,656,186

  20. Kim C S (1975) Thermophysical properties of stainless steels. Tech. rep., Argonne National Lab., Ill.(USA)

  21. Upadhyaya G S (2001) Materials science of cemented carbides: an overview. Materials & Design 22(6):483

    Article  Google Scholar 

  22. Liu K, Li X (2001) Ductile cutting of tungsten carbide. J Mater Process Technol 113(1-3):348

    Article  Google Scholar 

  23. Sipkens TA, Hadwin PJ, Grauer SJ, Daun KJ (2018) Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection. J Appl Phys 123(9):095103

    Article  Google Scholar 

  24. Neuenschwander B, Jaeggi B, Schmid M, Hennig G (2014) Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput. Phys Procedia 56:1047

    Article  Google Scholar 

  25. Smirnov NA, Kudryashov SI, Danilov PA, Rudenko AA, Gakovic B, Milovanović D, Ionin AA, Nastulyavichus AA, Umanskaya S (2019) Microprocessing of a steel surface by single pulses of variable width. Laser Physics Letters 16(5):056002

    Article  Google Scholar 

  26. Schille J, Schneider L, Loeschner U, Ebert R, Scully P, Goddard N, Steiger B, Exner H (2011) Micro processing of metals using a high repetition rate femtosecond laser: from laser process parameter study to machining examples. In: International Congress on Applications of Lasers & Electro-Optics (Laser Institute of America), pp 773–782

  27. Raciukaitis G, Brikas M, Gecys P, Voisiat B, Gedvilas M, et al. (2009) Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high? JLMN Journal of Laser Micro/Nanoengineering 4(3):186

    Article  Google Scholar 

  28. Bauer F, Michalowski A, Kiedrowski T, Nolte S (2015) Heat accumulation in ultra-short pulsed scanning laser ablation of metals. Optics express 23(2):1035

    Article  Google Scholar 

  29. Mannion P, Magee J, Coyne E, O’Connor G, Glynn T (2004) The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Applied surface science 233(1-4):275

    Article  Google Scholar 

  30. Metzner D, Lickschat P, Weißmantel S (2019) Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: ablation mechanisms and heat accumulation. Applied Physics A 125(7):462

    Article  Google Scholar 

  31. Pfeiffer M, Engel A, Weißmantel S, Scholze S, Reisse G (2011) Microstructuring of steel and hard metal using femtosecond laser pulses. Physics Procedia 12:60

    Article  Google Scholar 

  32. Lickschat P, Schille J, Mueller M, Weissmantel S, Reisse G (2012) Comparative study on microstructuring of steel using pico-and femtosecond laser pulses. In: International Congress on Applications of Lasers & Electro-Optics (Laser Institute of America), vol 2012, pp 1261–1268

Download references

Acknowledgments

The authors thank the European Social Fund for Germany (ESF) for funding the project No. 100360636 and the project No. 100339506.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lickschat.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lickschat, P., Metzner, D. & Weißmantel, S. Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide. Int J Adv Manuf Technol 109, 1167–1175 (2020). https://doi.org/10.1007/s00170-020-05502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05502-8

Keywords

Navigation