Skip to main content

Advertisement

Log in

A STEP-NC compliant robotic machining platform for advanced manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the era of advanced, intelligent, and flexible manufacturing, machining with industrial robots, it is expected to be set up in the next few years. This is due to the vast progress of these robots in terms of precision and stiffness. Moreover, there is a recent development of off-line programming. Consequently, industrial robots offer a real gain of modularity, flexibility, and access for machining on production lines, and are viable solutions to improve the productivity. At the same time, all the potentials of CAD/CAM solutions available for machining off-line programming are not fully exploited because of old G-code (ISO 6963, 1980) language that only enables the description of elementary actions and tools moves. In the context of Industry 4.0 and the development of smart equipments at all levels of production chain, the manufacturing digital thread has to be profoundly reconsidered in order to guarantee high-level information from the design to the manufacturing. In this paper, a solution is proposed based on the high-level programming STEP-NC standard combined with a suitable CAD/CAM solution for industrial robots machining. A complete platform has been developed to enable advanced and intelligent manufacturing with the possibility to integrate several modules of simulation, optimization, and visualization, as well as in-process fabrication adaptation, cloud manufacturing, and machine learning with database analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao W, Huan J, Dong S (2014) A step-compliant industrial robot data model for robot off-line programming systems. Robot Comput-Integr Manuf 30(2):114–123. https://doi.org/10.1016/j.rcim.2013.09.007

  2. Rea Minango SN, Ferreira JCE (2017) Combining the STEP-NC standard and forward and inverse kinematics methods for generating manufacturing toolpaths for serial and hybrid robots. Int J Comput Integr Manuf 30 (11):1203–1223. https://doi.org/10.1080/0951192X.2017.1305507

    Article  Google Scholar 

  3. Pan Z, Polden J, Larkin N, Van Duin S, Norrish J (2012) Recent progress on programming methods for industrial robots, vol 28

  4. Zhang H, Wang J, Zhang G, Gan Z, Pan Z, Cui H, Zhu Z (2005) Machining with flexible manipulator: toward improving robotic machining performance. In: 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings. IEEE, pp 1127–1132

  5. Solvang B, Refsahl LK, Sziebig G (2009) STEP-NC based industrial robot CAM system. IFAC Proc 42 (16):245–250

    Article  Google Scholar 

  6. Newman S, Allen R, Rosso R (2003) CAD/CAM solutions for STEP-compliant CNC manufacture. Int J Comput Integr Manuf 16(7-8):590–597

    Article  Google Scholar 

  7. Rauch M, Laguionie R, Hascoet JY, Suh SH (2012) An advanced STEP-NC controller for intelligent machining processes. Robot Comput-Integr Manuf 28(3):375–384. https://doi.org/10.1016/j.rcim.2011.11.001

    Article  Google Scholar 

  8. Bonnard R, Mognol P, Hascoet JY (2010) A new digital chain for additive manufacturing processes. Virtual Phys Prototyp 5(2):75–88. https://doi.org/10.1080/17452751003696916

    Article  Google Scholar 

  9. Torvalds L (2017) LinuxCNC. http://linuxcnc.org/

  10. Dimic Z, Milutinovic D, Zivanovic S, Kvrgic V (2016) Virtual environment in control and programming system for reconfigurable machining robot. Tehnicki vjesnik - Techn Gaz 23(6):155–176. https://doi.org/10.17559/TV-20150210133556

    Google Scholar 

  11. Kovács B, Szayer G, Tajti F (2011) Design of a universal robot controller. Period Polytech Mech Eng 55(2):95. https://doi.org/10.3311/pp.me.2011-2.06

    Article  Google Scholar 

  12. Milutinovic D, Glavonjic M, Slavkovic N, Dimic Z, Zivanovic S, Kokotovic B, Tanovic L (2011) Reconfigurable robotic machining system controlled and programmed in a machine tool manner. Int J Adv Manuf Technol 53(9-12):1217–1229. https://doi.org/10.1007/s00170-010-2888-8

    Article  Google Scholar 

  13. Hascoet JY, Rauch M (2016) Enabling advanced CNC programming with openNC controllers for HSM machines tools. High Speed Mach 2(1). https://doi.org/10.1515/hsm-2016-0001

  14. Rauch M, Hascot JY, Simoes V, Hamilton K (2014) Advanced programming of machine tools: interests of an open CNC controller within a STEP-NC environment. Int J Mach Mach Mater 7 15(1-2):2–17

    Google Scholar 

  15. ISO 8373-2 (2012) Robots and robotic devices – vocabulary

  16. International Federation of Robotics (2016) World Robotics Report 2016. https://ifr.org/ifr-press-releases/news/world-robotics-report-2016

  17. International Federation of Robotics (2015) World Robotics Survey: industrial robots are conquering the world. https://ifr.org/ifr-press-releases/news/world-robotics-survey-industrial-robots-are-conquering-the-world-

  18. Xu X (2017) Machine Tool 4.0 for the new era of manufacturing. Int J Adv Manuf Technol 91(5):1893–1900. https://doi.org/10.1007/s00170-017-0300-7

    Article  Google Scholar 

  19. ISO 3592-2 (2000) Industrial automation systems – numerical control of machines – nc processor output – file structure and language format

  20. Zivanovic S, Vasilic G (2017) A new CNC programming method using STEP-NC protocol. FME Transn 45(1):149–158. https://doi.org/10.5937/fmet1701149Z

    Article  Google Scholar 

  21. ISO 14649-1 (2003) Industrial automation systems and integration - physical device control - data model for computerized numerical controllers - Part 1: overview and fundamental principles

  22. ISO 10303-238 (2007) Industrial automation systems and integration - product data representation and exchange - Part 238: application protocol: application interpreted model for computerized numerical controllers

  23. ISO 6983-1 (1982) Numerical control of machines program format and definition of address words Part1: data format for positioning, line motion and contouring control systems

  24. ISO 14649-16 (2004) Industrial automation systems and integration - physical device control - data model for computerized numerical controllers - Part 16: data for touch probing based inspection

  25. ISO 10303-219 (2007) Industrial automation systems and integration - product data representation and exchange - Part 219: application protocol: dimensional inspection information exchange

  26. Danjou C, Le Duigou J, Eynard B (2017) Manufacturing knowledge management based on STEP-NC standard: a closed-loop manufacturing approach. Int J Comput Integr Manuf 30(9):995–1009. https://doi.org/10.1080/0951192X.2016.1268718

    Article  Google Scholar 

  27. Lu Y, Xu X, Xu J (2014) Development of a hybrid manufacturing cloud. J Manuf Syst 33(4):551–566. https://doi.org/10.1016/j.jmsy.2014.05.003

    Article  MathSciNet  Google Scholar 

  28. Um J, Suh SH, Stroud I (2016) STEP-NC machine tool data model and its applications. Int J Comput Integr Manuf 29(10):1058–1074. https://doi.org/10.1080/0951192X.2015.1130264

    Article  Google Scholar 

  29. Xu XW, Wang H, Mao J, Newman ST, Kramer TR, Proctor FM, Michaloski J (2005) STEP-compliant NC research: the search for intelligent CAD/CAPP/CAM/CNC integration. Int J Prod Res 43 (17):3703–3743. https://doi.org/10.1080/00207540500137530

    Article  Google Scholar 

  30. Xiao W, Strauß H, Loohß T, Hoffmeister HW, Hesselbach J (2011) Closed-form inverse kinematics of 6r milling robot with singularity avoidance. Prod Eng 5(1):103–110. https://doi.org/10.1007/s11740-010-0283-9

    Article  Google Scholar 

  31. Pandremenos J, Doukas C, Stavropoulos P, Chryssolouris G (2011) Machining with robots: a critical review. Proceedings of DET2011, pp 1–9

  32. Song W, Wang G, Xiao J, Wang G, Hong Y (2012) Research on multi-robot open architecture of an intelligent CNC system based on parameter-driven technology. Robot Comput-Integr Manuf 28(3):326–333. https://doi.org/10.1016/j.rcim.2011.10.002

    Article  Google Scholar 

  33. Vichare P, Nassehi A, Kumar S, Newman ST (2009) A Unified Manufacturing Resource Model for representing CNC machining systems. Robot Comput-Integr Manuf 25(6):999–1007. https://doi.org/10.1016/j.rcim.2009.04.014

    Article  Google Scholar 

  34. Valilai OF, Houshmand M (2010) INFELT STEP: An integrated and interoperable platform for collaborative CAD/CAPP/CAM/CNC machining systems based on STEP standard. In: Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II, World Congress on Engineering and Computer Science, WCECS 2010, San Francisco, pp 20 - 22

  35. ISO 10303-11 (2004) Industrial automation systems and integration - product data representation and exchange - Part 11: description methods: the EXPRESS language reference manual

  36. Newman S, Nassehi A, Xu X, Rosso R, Wang L, Yusof Y, Ali L, Liu R, Zheng L, Kumar S, Vichare P, Dhokia V (2008) Strategic advantages of interoperability for global manufacturing using CNC technology. Robot Comput-Integr Manuf 24(6):699–708. https://doi.org/10.1016/j.rcim.2008.03.002

    Article  Google Scholar 

  37. Hardwick M, Zhao YF, Proctor FM, Nassehi A, Xu X, Venkatesh S, Odendahl D, Xu L, Hedlind M, Lundgren M, Maggiano L, Loffredo D, Fritz J, Olsson B, Garrido J, Brail A (2013) A roadmap for STEP-NC-enabled interoperable manufacturing. Int J Adv Manuf Technol 68(5-8):1023–1037. https://doi.org/10.1007/s00170-013-4894-0

    Article  Google Scholar 

  38. Cha JM, Suh SH, Hascoet JY, Stroud I (2016) A roadmap for implementing new manufacturing technology based on STEP-NC. J Intell Manuf 27(5):959–973. https://doi.org/10.1007/s10845-014-0927-2

    Article  Google Scholar 

  39. Weck M, Wolf J, Kiritsis D (2001) Weck-Wolf-Kiritsis-STEP-NC - The STEP compliant NC Programming Interface.pdf. Verita/Ascona, Switzerland

    Google Scholar 

  40. Suh S, Lee B, Chung D, Cheon S (2003) Architecture and implementation of a shop-floor programming system for STEP-compliant CNC. Comput-Aided Des 35(12):1069–1083. https://doi.org/10.1016/S0010-4485(02)00179-3

    Article  Google Scholar 

  41. Suh SH, Chung DH, Lee BE, Shin S, Choi I, Kim KM (2006) STEP-compliant CNC system for turning: data model, architecture, and implementation. Comput-Aided Des 38(6):677–688. https://doi.org/10.1016/j.cad.2006.02.006

    Article  Google Scholar 

  42. Xu X (2006) Realization of STEP-NC enabled machining. Robot Comput-Integr Manuf 22(2):144–153. https://doi.org/10.1016/j.rcim.2005.02.009

    Article  Google Scholar 

  43. Laguionie R, Rauch M, Hascot JY, Suh SH (2011) An extended manufacturing integrated system for feature-based manufacturing with STEP-NC. Int J Comput Integr Manuf 24(9):785–799. https://doi.org/10.1080/0951192X.2011.592992

    Article  Google Scholar 

  44. Alvares AJ, Ferreira JCE, Lorenzo RM (2008) An integrated web-based CAD/CAPP/CAM system for the remote design and manufacture of feature-based cylindrical parts. J Intell Manuf 19(6):643–659. https://doi.org/10.1007/s10845-008-0117-1

    Article  Google Scholar 

  45. Benavente JCT, Ferreira JCE, Goulart CM, Oliveira VGd (2013) A STEP-NC compliant system for the remote design and manufacture of mechanical components through the Internet. Int J Comput Integr Manuf 26 (5):412–428. https://doi.org/10.1080/0951192X.2012.719086

    Article  Google Scholar 

  46. Ferreira JCE, Benavente JCT, Inoue PHS (2017) A web-based CAD/CAPP/CAM system compliant with the STEP-NC standard to manufacture parts with general surfaces. J Braz Soc Mech Sci Eng 39(1). https://doi.org/10.1007/s40430-016-0528-4

  47. Xiao W, Zheng L, Huan J, Lei P (2015) A complete CAD/CAM/CNC solution for STEP-compliant manufacturing. Robot Comput-Integr Manuf 31:1–10. https://doi.org/10.1016/j.rcim.2014.06.003

    Article  Google Scholar 

  48. Tools S (2017) ST-Machine STEP-NC for CAM-CNC

  49. Oliveira L, Alvares A (2016) Axiomatic design applied to the development of a system for monitoring and teleoperation of a cnc machine through the internet. Procedia CIRP 53(Supplement C):198–205. https://doi.org/10.1016/j.procir.2016.06.099. http://www.sciencedirect.com/science/article/pii/S2212827116307181. The 10th International Conference on Axiomatic Design (ICAD2016)

    Article  Google Scholar 

  50. Stavropoulos P, Chantzis D, Doukas C, Papacharalampopoulos A, Chryssolouris G (2013) Monitoring and control of manufacturing processes: a review. Procedia CIRP 8:421–425. https://doi.org/10.1016/j.procir.2013.06.127

    Article  Google Scholar 

  51. He J, Pan Z, Zhang H (2007) Adaptive force control for robotic machining process. In: American Control Conference, 2007. ACC’07. IEEE, pp 1–6. https://doi.org/10.1109/ACC.2007.4282405

  52. Zivanovic S, Puzovic R (2016) Wire EDM machining simulations based on STEP-NC program. Tehnicki vjesnik - Tech Gaz 23(6). https://doi.org/10.17559/TV-20151122180547

  53. Creo P (2017) Creo PTC. http://www.ptc.com/cad/creo

  54. żivanović S, Glavonjić M (2014) Methodology for implementation scenarios for applying protocol step-nc. J Prod Eng 17(1):71–74

    Google Scholar 

  55. ISO 8879-1 (1986) Information processing – text and office systems – standard generalized markup language (sgml)

  56. Proctor FM, Michaloski J (1993) Enhanced machine controller architecture overview. US Department of Commerce, National Institute of Standards and Technology

  57. Staroveški T, Brezak D, Udiljak T (2013) Linuxcnc–the enhanced machine controller: application and an overview. Tech Gaz 20(6):1103–1110

    Google Scholar 

  58. Preez R (2014) 3d 6-dof serial arm robot - kinematics and implementation in linuxcnc. ASM

  59. Kramer TR, Proctor FM, Messina E (2000) The NIST RS274NGC Interpreter. 6556

  60. Toquica JS (2016) Retrofitting do robô asea irb6-s2 baseado em tecnologias de comando numérico usando linuxcnc. Master’s thesis, Universidade de Brasilia

  61. Souza FJ, Ferreira JCE, Martin CA, Gascho WF (2015) Remote machining of prismatic parts through the internet in a cnc machine compliant with the step-nc standard. In: 23rd ABCM International Congress of Mechanical Engineering-Rio de Janeiro, Brazil, pp 6–11

  62. Vichare P, Zhang X, Dhokia V, Cheung WM, Xiao W, Zheng L (2017) Computer numerical control machine tool information reusability within virtual machining systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture p 0954405417708219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan S. Toquica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toquica, J.S., živanović, S., Alvares, A.J. et al. A STEP-NC compliant robotic machining platform for advanced manufacturing. Int J Adv Manuf Technol 95, 3839–3854 (2018). https://doi.org/10.1007/s00170-017-1466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1466-8

Keywords

Navigation