Skip to main content
Log in

Early chatter detection in end milling based on multi-feature fusion and 3σ criterion

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter detection and suppression/control is an effective way to ensure the quality of workpiece in machining process. In this paper, a new method is proposed to detect early chatter before the workpiece surface is deteriorated. As a preparation work, various samples in stable cutting conditions are collected to train the self-organizing map (SOM) neural network. During online chatter monitoring, firstly, vibration signals are measured in real time and multi-features are extracted with signal processing methods to form a feature vector. Then, the feature vector is input to the trained SOM neural network. The minimum quantization error (MQE), namely, the Euclidean distance between the best matching unit (BMU) of the SOM neural network and the feature vector, is calculated as a new chatter detection indicator. Lastly, the MQE is compared with a 3σ criterion-based threshold, which is independent of cutting conditions, to determine the chatter occurrence. The proposed method was verified with end milling tests, and the results showed that the chatter can be detected before serious marks were left on the workpiece surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo Q, Jiang Y, Zhao B, Ming P (2016) Chatter modeling and stability lobes predicting for non-uniform helix tools. Int J Adv Manuf Technol 87(1–4):251–266. doi:10.1007/s00170-016-8458-y

    Article  Google Scholar 

  2. Li Z, Yang Z, Peng Y, Zhu F, Ming X (2016) Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol 86(1–4):943–952. doi:10.1007/s00170-015-8207-7

    Article  Google Scholar 

  3. Qu S, Zhao J, Wang T (2016) Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate. Int J Adv Manuf Technol 86(5–8):2291–2300. doi:10.1007/s00170-016-8357-2

    Article  Google Scholar 

  4. Wan M, Ma Y-C, Zhang W-H, Yang Y (2015) Study on the construction mechanism of stability lobes in milling process with multiple modes. Int J Adv Manuf Technol 79(1–4):589–603. doi:10.1007/s00170-015-6829-4

    Article  Google Scholar 

  5. Wan M, Zhang W-H, Dang J-W, Yang Y (2010) A unified stability prediction method for milling process with multiple delays. Int J Mach Tools Manuf 50(1):29–41. doi:10.1016/j.ijmachtools.2009.09.009

    Article  Google Scholar 

  6. Yiqing Y, Qiang L, Bin Z (2014) Three-dimensional chatter stability prediction of milling based on the linear and exponential cutting force model. Int J Adv Manuf Technol 72(9–12):1175–1185. doi:10.1007/s00170-014-5703-0

    Google Scholar 

  7. Wan M, Altintas Y (2014) Mechanics and dynamics of thread milling process. Int J Mach Tools Manuf 87:16–26. doi:10.1016/j.ijmachtools.2014.07.006

    Article  Google Scholar 

  8. Ma L, Melkote SN, Castle JB (2013) A model-based computationally efficient method for on-line detection of chatter in milling. J Manuf Sci Eng-Trans ASME 135(3):031007. doi:10.1115/1.4023716

    Article  Google Scholar 

  9. Cao H, Holkup T, Altintas Y (2011) A comparative study on the dynamics of high speed spindles with respect to different preload mechanisms. Int J Adv Manuf Technol 57(9–12):871–883. doi:10.1007/s00170-011-3356-9

    Article  Google Scholar 

  10. Cao H, Li B, He Z (2012) Chatter stability of milling with speed-varying dynamics of spindles. Int J Mach Tools Manuf 52(1):50–58. doi:10.1016/j.ijmachtools.2011.09.004

    Article  Google Scholar 

  11. Cao H, Zhang X, Chen X (2017) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52. doi:10.1016/j.ijmachtools.2016.10.005

    Article  Google Scholar 

  12. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. doi:10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  13. Van Dijk NJM, Doppenberg EJJ, Faassen RPH, van de Wouw N, Oosterling JAJ, Nijmeijer H (2010) Automatic in-process chatter avoidance in the high-speed milling process. J Dyn Syst, Meas, Control-Trans ASME 132(3):031006

    Article  Google Scholar 

  14. Wang L, Liang M (2009) Chatter detection based on probability distribution of wavelet modulus maxima. Robot Comput Integr Manuf 25(6):989–998

    Article  Google Scholar 

  15. Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int J Mach Tools Manuf 69:11–19. doi:10.1016/j.ijmachtools.2013.02.007

    Article  Google Scholar 

  16. Cao H, Zhou K, Chen X (2015) Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. Int J Mach Tools Manuf 92:52–59. doi:10.1016/j.ijmachtools.2015.03.002

    Article  Google Scholar 

  17. Sun H, Zhang X, Wang J (2016) Online machining chatter forecast based on improved local mean decomposition. Int J Adv Manuf Technol 84(5):1045–1056. doi:10.1007/s00170-015-7785-8

    Google Scholar 

  18. Fu Y, Zhang Y, Zhou H, Li D, Liu H, Qiao H, Wang X (2016) Timely online chatter detection in end milling process. Mech Syst Signal Process 75:668–688. doi:10.1016/j.ymssp.2016.01.003

    Article  Google Scholar 

  19. Tangjitsitcharoen S, Pongsathornwiwat N (2013) Development of chatter detection in milling processes. Int J Adv Manuf Technol 65(5):919–927. doi:10.1007/s00170-012-4228-7

    Article  Google Scholar 

  20. Huang P, Li J, Sun J, Zhou J (2013) Vibration analysis in milling titanium alloy based on signal processing of cutting force. Int J Adv Manuf Technol 64(5):613–621. doi:10.1007/s00170-012-4039-x

    Article  Google Scholar 

  21. Rusinek R, Lajmert P, Kecik K, Kruszynski B, Warminski J (2015) Chatter identification methods on the basis of time series measured during titanium superalloy milling. Int J Mech Sci 99:196–207. doi:10.1016/j.ijmecsci.2015.05.013

    Article  Google Scholar 

  22. Feng J, Sun Z, Jiang Z, Yang L (2016) Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography. Int J Adv Manuf Technol 82(9):1909–1920. doi:10.1007/s00170-015-7509-0

    Article  Google Scholar 

  23. Cao H, Yue Y, Chen X, Zhang X (2016) Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int J Adv Manuf Technol:1–9. doi:10.1007/s00170-016-9660-7

  24. Jin X, Poudel A (2015) Experimental study on high frequency chatter attenuation in 2-D vibration assisted micro milling process. J Vibroengineering 17(6):2743–2754

    Google Scholar 

  25. Quintana G, Ciurana J, Ferrer I, Rodríguez CA (2009) Sound mapping for identification of stability lobe diagrams in milling processes. Int J Mach Tools Manuf 49(3–4):203–211. doi:10.1016/j.ijmachtools.2008.11.008

    Article  Google Scholar 

  26. Schmitz TL, Medicus K, Dutterer B (2006) Exploring once-per-revolution audio signal variance as a chatter indicator. Mach Sci Technol 6(2):215–233. doi:10.1081/mst-120005957

    Article  Google Scholar 

  27. Altintas Y, Chan PK (1992) In-process detection and suppression of chatter in milling. Int J Mach Tools Manuf 32(3):329–347. doi:10.1016/0890-6955(92)90006-3

    Article  Google Scholar 

  28. Soliman E, Ismail F (1997) Chatter detection by monitoring spindle drive current. Int J Adv Manuf Technol 13(1):27–34. doi:10.1007/bf01179227

    Article  Google Scholar 

  29. Lamraoui M, El Badaoui M, Guillet F (2015) Chatter detection in CNC milling processes based on Wiener-SVM approach and using only motor current signals. In: Sinha KJ (ed) Vibration engineering and technology of machinery: Proceedings of VETOMAC X 2014, held at the University of Manchester, UK, September 9–11, 2014. Springer International Publishing, Cham, pp 567–578. doi:10.1007/978-3-319-09918-7_50

  30. Kwak J-S, Ha M-K (2004) Neural network approach for diagnosis of grinding operation by acoustic emission and power signals. J Mater Process Technol 147(1):65–71. doi:10.1016/j.jmatprotec.2003.11.016

    Article  Google Scholar 

  31. Liu H, Chen Q, Li B, Mao X, Mao K, Peng F (2011) On-line chatter detection using servo motor current signal in turning. SCIENCE CHINA Technol Sci 54(12):3119–3129. doi:10.1007/s11431-011-4595-6

    Article  MATH  Google Scholar 

  32. Liu Y, Wang X, Lin J, Zhao W (2016) Early chatter detection in gear grinding process using servo feed motor current. Int J Adv Manuf Technol 83(9–12):1801–1810. doi:10.1007/s00170-015-7687-9

    Article  Google Scholar 

  33. Tansel IN, Li M, Demetgul M, Bickraj K, Kaya B, Ozcelik B (2012) Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR). Int J Adv Manuf Technol 58(1–4):109–118. doi:10.1007/s00170-010-2838-5

    Article  Google Scholar 

  34. Kakinuma Y, Sudo Y, Aoyama T (2011) Detection of chatter vibration in end milling applying disturbance observer. CIRP Ann-Manuf Technol 60(1):109–112. doi:10.1016/j.cirp.2011.03.080

    Article  Google Scholar 

  35. Tansel IN, Wagiman A, Tziranis A (1991) Recognition of chatter with neural networks. Int J Mach Tools Manuf 31(4):539–552. doi:10.1016/0890-6955(91)90035-2

    Article  Google Scholar 

  36. Tarng YS, Chen MC (1994) An intelligent sensor for detection of milling chatter. J Intell Manuf 5(3):193–200. doi:10.1007/bf00123923

    Article  Google Scholar 

  37. Tarng YS, Li TC, Chen MC (1994) Online drilling chatter recognition and avoidance using an art2 - a neural-network. Int J Mach Tools Manuf 34(7):949–957. doi:10.1016/0890-6955(94)90027-2

    Article  Google Scholar 

  38. Li TC, Tarng YS, Chen MC (1996) A self-organising neural network for chatter identification in milling. Int J Comput Appl Technol 9(5–6):239–248

    Google Scholar 

  39. Li XQ, Wong YS, Nae AYC (1998) A comprehensive identification of tool failure and chatter using a parallel multi-ART2 neural network. J Manuf Sci Eng-Trans ASME 120(2):433–442. doi:10.1115/1.2830144

    Article  Google Scholar 

  40. Su C, Hino J, Yoshimura T (2000) Prediction of chatter in high-speed milling by means of fuzzy neural networks. Int J Syst Sci 31(10):1323–1330

    Article  MATH  Google Scholar 

  41. Hino J, Su CX, Yoshimura T (2001) A study on chatter prediction in high-speed end milling process by fuzzy neural network. JSME Int J Series C-Mech Syst Mach Elem Manuf 44(3):825–831. doi:10.1299/jsmec.44.825

    Article  Google Scholar 

  42. Hino J, Okubo S, Yoshimura T (2006) Chatter prediction in end milling by FNN model with pruning. JSME Int J Series C-Mech Syst Mach Elem Manuf 49(3):742–749. doi:10.1299/jsmec.49.742

    Article  Google Scholar 

  43. Kuljanic E, Totis G, Sortino M (2009) Development of an intelligent multisensor chatter detection system in milling. Mech Syst Signal Process 23(5):1704–1718. doi:10.1016/j.ymssp.2009.01.003

    Article  Google Scholar 

  44. Seong S-T, Jo K-T, Lee Y-M (2009) Cutting force signal pattern recognition using hybrid neural network in end milling. Trans Nonferrous Metals Soc China 19:s209–s214. doi:10.1016/S1003-6326(10)60272-5

    Article  Google Scholar 

  45. Lamraoui M, Barakat M, Thomas M, El Badaoui M (2015) Chatter detection in milling machines by neural network classification and feature selection. J Vib Control 21(7):1251–1266. doi:10.1177/1077546313493919

    Article  Google Scholar 

  46. Kohonen T (1990) The self-organizing map. Proceedings of the IEEE 78(9):1464–1480. doi:10.1109/5.58325

  47. Zhu K, Wang Z (2010) Proficient in MATLAB neural network. Publishing House of Electronics Industry

  48. Lei Y, He Z, Zi Y (2008) A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst Appl 35(4):1593–1600. doi:10.1016/j.eswa.2007.08.072

    Article  Google Scholar 

  49. Hong H, Liang M (2009) Fault severity assessment for rolling element bearings using the Lempel–Ziv complexity and continuous wavelet transform. J Sound Vib 320(1–2):452–468. doi:10.1016/j.jsv.2008.07.011

    Article  Google Scholar 

  50. Shen E-h, Z-j C, F-j G (2005) Mathematical foundation of a new complexity measure. Appl Math Mech 26(9):1188–1196

    Article  MathSciNet  Google Scholar 

  51. Lei Y, He Z, Zi Y, Hu Q (2007) Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech Syst Signal Process 21(5):2280–2294. doi:10.1016/j.ymssp.2006.11.003

    Article  Google Scholar 

  52. Flandrin P (2004) Detrending and denoising with empirical mode decompositions. In: Signal Processing Conference, 2004 12th European, 6–10 Sept. 2004. pp 1581–1584

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongrui Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Zhou, K., Chen, X. et al. Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int J Adv Manuf Technol 92, 4387–4397 (2017). https://doi.org/10.1007/s00170-017-0476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0476-x

Keywords

Navigation