Skip to main content
Log in

Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In vertical milling process of Ti-6Al-4V titanium alloy thin-walled workpieces, chatter as a thorny problem occurs easily, which can lead to the instability of the machining process, tool wear, and poor surface finish. It has become a focus issue to identify and avoid chatter in machining process. In this paper, the milling force signals in the direction perpendicular to the machined surface were analyzed by fast Fourier transform and wavelet transform for detecting chatter. The combination of the surface topography and the prediction theory of regenerative chatter were put forward to further verify chatter. The results show that fast Fourier transform in some cases, wavelet transform, and the combination of surface topography and the prediction theory of regenerative chatter can obtain better results for the detection and verification of chatter, and the stable cutting zone was obtained using a stability lobe diagram, which can assist in the selection of reasonable cutting parameters to avoid chatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang PL, Li JF, Sun J, Zhou J (2014) Study on performance in dry milling aeronautical titanium alloy thin-wall components with two types of tools. J Clean Prod 67:258–264. doi:10.1016/j.jclepro.2013.12.006

    Article  Google Scholar 

  2. Zhu LD, Zhu CX, Pei JY, Li XB, Wang W (2014) Prediction of three-dimensional milling forces based on finite element. Adv Mater Sci Eng 7. doi: 10.1155/2014/918906

  3. Li X, Zhao W, Li L, He N, Chi S (2015) Modeling and application of process damping in milling of thin-walled workpiece made of titanium alloy. Shock Vib 2015:1–12. doi:10.1155/2015/431476

    Google Scholar 

  4. Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70(5-8):919–928. doi:10.1007/s00170-013-5326-x

    Article  Google Scholar 

  5. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61:27–47. doi:10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  6. Duncan GS, Tummond MF, Schmitz TL (2005) An investigation of the dynamic absorber effect in high-speed machining. Int J Mach Tools Manuf 45(4-5):497–507. doi:10.1016/j.ijmachtools.2004.09.005

    Article  Google Scholar 

  7. López De Lacalle LN, Pérez J, Llorente JI, Sánchez JA (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11. doi:10.1016/S0924-0136(99)00372-6

    Article  Google Scholar 

  8. Tobias SA (1965) Machine–tool vibration. Blackie, London

    Google Scholar 

  9. Tlusty J (1986) Dynamics of high speed milling. J Eng Ind Trans ASME 108(59–67). doi: 10.1115/1.3187052

  10. Tlusty J, Polacek M (1963) The stability of machine tools against self-excited vibrations in machining. Proceedings of the international research in production engineering, ASME, Pittsburgh, PA, pp. 465–474

  11. Bravo U, Altuzarra O, López De Lacalle LN, Sánchez JA, Campa FJ (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45(15):1669–1680. doi:10.1016/j.ijmachtools.2005.03.004

    Article  Google Scholar 

  12. Campa FJ, Lopez De Lacalle LN, Celaya A (2011) Chatter avoidance in the milling of thin floors with bull-nose end mills: model and stability diagrams. Int J Mach Tools Manuf 51(1):43–53. doi:10.1016/j.ijmachtools.2010.09.008

    Article  Google Scholar 

  13. Heisel U, Feinauer A (1999) Dynamic influence on workpiece quality in high speed milling. CIRP Ann 48:321–324

    Article  Google Scholar 

  14. Tang AJ, Liu ZQ (2009) Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate. Int J Adv Manuf Technol 43(1-2):33–39. doi:10.1007/s00170-008-1695-y

    Article  Google Scholar 

  15. Ítalo Sette Antonialli A, Eduardo Diniz A, Pederiva R (2010) Vibration analysis of cutting force in titanium alloy milling. Int J Mach Tools Manuf 50(1):65–74. doi:10.1016/j.ijmachtools.2009.09.006

    Article  Google Scholar 

  16. Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling. Int J Adv Manuf Technol 27(7-8):638–644. doi:10.1007/s00170-004-2241-1

    Article  Google Scholar 

  17. Huang P, Li J, Sun J, Zhou J (2013) Vibration analysis in milling titanium alloy based on signal processing of cutting force. Int J Adv Manuf Technol 64(5-8):613–621. doi:10.1007/s00170-012-4039-x

    Article  Google Scholar 

  18. Cao H, Chen X, Zi Y, Ding F, Chen H, Tan J, He Z (2008) End milling tool breakage detection using lifting scheme and Mahalanobis distance. Int J Mach Tools Manuf 48(2):141–151. doi:10.1016/j.ijmachtools.2007.09.001

    Article  Google Scholar 

  19. Al-Zaharnah IT (2006) Suppressing vibrations of machining processes in both feed and radial directions using an optimal control strategy: the case of interrupted cutting. J Mater Process Technol 172(2):305–310. doi:10.1016/j.jmatprotec.2005.10.008

    Article  Google Scholar 

  20. Huang P, Li J, Sun J, Ge M (2012) Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill. Int J Adv Manuf Technol 58(1-4):153–160. doi:10.1007/s00170-011-3380-9

    Article  Google Scholar 

  21. Zhu K, Wong YS, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int J Mach Tools Manuf 49(7-8):537–553. doi:10.1016/j.ijmachtools.2009.02.003

    Article  Google Scholar 

  22. Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713–719. doi:10.1016/j.jmatprotec.2009.11.007

    Article  Google Scholar 

  23. Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. J Manuf Sci Eng 113(2):160–168

    Google Scholar 

  24. Jiang H, Long X, Meng G (2008) Study of the correlation between surface generation and cutting vibrations in peripheral milling. J Mater Process Technol 208(1-3):229–238. doi:10.1016/j.jmatprotec.2007.12.127

    Article  Google Scholar 

  25. Arizmendi M, Campa FJ, Fernández J, López De Lacalle LN, Gil A, Bilbao E, Veiga F, Lamikiz A (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Ann Manuf Technol 58(1):93–96. doi:10.1016/j.cirp.2009.03.084

    Article  Google Scholar 

  26. Wang M, Gao L, Zheng Y (2014) Prediction of regenerative chatter in the high-speed vertical milling of thin-walled workpiece made of titanium alloy. Int J Adv Manuf Technol 72(5-8):707–716. doi:10.1007/s00170-014-5641-x

    Article  Google Scholar 

  27. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal 11(7):674–693. doi:10.1109/34.192463

    Article  MATH  Google Scholar 

  28. Wickerhauser MV (1991) INRIA lectures on wavelet packet algorithms. INRIA, Roquencourt, France, Minicourse lecture notes

  29. Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. Trans ASME J Eng 118(2):216–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Sun, Z., Jiang, Z. et al. Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography. Int J Adv Manuf Technol 82, 1909–1920 (2016). https://doi.org/10.1007/s00170-015-7509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7509-0

Keywords

Navigation