Skip to main content
Log in

Sheet-metal bend sequence planning subjected to process and material variations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

CNC press-brake forming is widely used to transform sheet-metal blanks into complex three-dimensional shapes in a low quantity high variety manufacturing environment. Sheet-metal bend sequence planning is a complex combinatorial problem. Process planning and tolerance reasoning for sheet-metal forming are critical to reduce manufacturing time and to address accuracy aspects. Handling time and accuracy of sheet-metal-formed components strongly depend upon the bending sequence. Process and material variations shrink the tolerance zones and therefore their effect must be incorporated in the overall sheet-metal process planning activity. Monte Carlo simulations are used in this article to evaluate the effect of process and material variations on bending accuracy. Branch-and-bound, traveling salesman problem (TSP)-based techniques are used to identify potential feasible bending sequences. Results from the Monte Carlo simulations are used as input for sheet-metal bend sequence planning. In the case study, proposed methodology is used for available industrial sheet-metal components. Resulted tolerance zones attenuated after the probabilistic deflection analysis. Expected error input from probabilistic deflection analysis produced bending sequences which resulted in formed components within designed accuracy limits. Possibility of forming out of tolerance components is also attenuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mehrabi MG, Ulsoy AG, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J Intell Manuf 13:134–146

    Google Scholar 

  2. ElMaraghy HA (2006) Flexible and reconfigurable manufacturing systems paradigms. Int J Flex Manuf Syst 17:261–276

    Article  MATH  Google Scholar 

  3. Taylan A (2012) Sheetmetal forming: fundamentals. ASM international. ISBN-13:978-1-61503-842-8

  4. Taylan A (2012) Sheet-metal forming: processes and applications. ASM International. ISBN-13:978-1-61503-844-2

  5. Duflou JR, Van Oudheusden D, Kruth JP, Cattrysse D (1999) Methods for the sequencing of sheet-metal bending operations. Int J Prod Res 37(14):3185–3202. doi:10.1080/002075499190239

    Article  MATH  Google Scholar 

  6. Duflou JR, Vancza J, Aerens R (2005) Computer aided process planning for sheet-metal bending. Comput Ind 56:747–771

    Article  Google Scholar 

  7. De Vin LJ, De Vries J, Streppel T (2000) Process planning for small batch manufacturing of sheet-metal parts. Int J Prod Res 38(17):4273–4283

    Article  Google Scholar 

  8. Faraz Z, Waheed SH, Baqai AA, Tarat W, Ali L (2014) Reconfigurable fixture locating layout for compliant sheet-metal welded assemblies subjected to welding force variations. Proc IMechE B J Eng Manuf 228:740

    Article  Google Scholar 

  9. Rui W, Thimm GL, Yongsheng (2010) Review: Geometric and dimensional tolerance modeling for sheet-metal forming and integration with CAPP. Int J Adv Manuf Technol 51:871–889

    Article  Google Scholar 

  10. Vin LJ (2001) Expecting the unexpected, a must for accurate brakeforming. J Mater Process Technol 117:244–248

    Article  Google Scholar 

  11. Ong SK, Vin LJ, Nee AYS, Kals HJJ (1997) Fuzzy set theory applied to bend sequencing for sheet-metal bending. J Mater Process Technol 69:29–36

    Article  Google Scholar 

  12. Vin LJ (2000) Curvature prediction in air bending of metal sheet. J Mater Process Technol 100:257–261

    Article  Google Scholar 

  13. Vin LJ, Streppel AH, Kals HJJ (1996) The accuracy aspect in set-up determination for sheet bending. Int J Adv Manuf Technol 11:179–185

    Article  Google Scholar 

  14. Kannan TR, Shunmugam MS (2009) Processing of 3D sheet-metal components in STEP-AP-203 format. Part-I: feature recognition system. Int J Prod Res 47(4):941–964. doi:10.1080/00207540701510055

    Article  Google Scholar 

  15. Kannan TR, Shunmugam MS (2009) Processing of 3D sheet-metal components in STEP-AP-203-format. Part-II: feature reasoning system. Int J Prod Res 47(5):1287–1308. doi:10.1080/00207540701510063

    Article  Google Scholar 

  16. Vin LJ, Vries D, Streppel AH et al (1994) The generation of bending sequences in a CAPP system for sheet-metal components. J Mater Process Technol 41:331–339

    Article  Google Scholar 

  17. Kontolatis N, Vosniakos GC (2012) Optimisation of press-brake bending operations in 3D space. J Intell Manuf 23(3):457–469

    Article  Google Scholar 

  18. Vin LJ, Streppel AH (1998) Tolerance reasoning and set-up planning for brakeforming. Int J Adv Manuf Technol 14:336–342

    Article  Google Scholar 

  19. Fu Z, Mo J, Zhang W (2009) Study on multiple-step incremental air-bending forming of sheet metal with spring back model and FEM. Int J Adv Manuf Technol 45:448–458

    Article  Google Scholar 

  20. Streppel AH, Lutters D, Kals HJJ (2001) Process modelling for air bending: validation by experiments and simulation. J Mater Process Technol 115:76–82

    Article  Google Scholar 

  21. Kurtaran H (2008) A novel approach for the prediction of bend allowance in air bending and comparison with other methods. Int J Adv Manuf Technol 37:486–495

    Article  Google Scholar 

  22. Leu D-K. Positional deviation and spring back in V-die bending process with asymmetric dies. Int J Adv Manuf Technol. doi 10.1007/s00170-014-6532-x

  23. Leu D-K (2013) Positional deviation in V-die bending process with asymmetric bend length. Int J Adv Manuf Technol 64:93–103

    Article  Google Scholar 

  24. Xia M, Yan Q, Xie J (2011) An investigation on multistage bending of blank sheet into cylindrical tube by experiment and numerical simulation. Int J Adv Manuf Technol 53:145–155

    Article  Google Scholar 

  25. Alan C, Chen C-F (2014) Sequence planning and tool selection for bending processes of 2.5D sheet metals. Advances in mechanical engineering. Hindaw publishing corporation. Article ID 204930

  26. Gupta SK (1999) Sheet metal bending operation planning: using virtual node generation to improve search efficiency. J Manuf Syst 18(2)

  27. Markus A, Vancza J (2002) Constraint-based process planning in sheet metal bending. CIRP Ann Manuf Technol 51(1):425–428

    Article  Google Scholar 

  28. Jagirdar R, Batra JL (2001) Characterization and identification of forming features for 3-D sheet metal components. Int J Mach Tools Manuf 41:1295–1322

    Article  Google Scholar 

  29. Aomura S, Koguchi A (2002) Optimized bending sequences of sheet metal bending by robot. Robot Comput Integr Manuf 18:29–39

    Article  Google Scholar 

  30. Ciurana J, Ferrer I (2006) Activity model and computer aided systems for defining sheet metal process planning. J Mater Process Technol 173:213–222

    Article  Google Scholar 

  31. Seo Y-H, Park J-w, Kim J (2014) Flexible Die design and spring back compensation based on modified displacement adjustment method. Adv Mech Eng 2014:131253

    Google Scholar 

  32. Bahloul R, Potiron A (2010) Comparison between three optimization methods for the minimization of maximum bending load and spring back in wiping die bending obtained by an experimental approach. Int J Adv Manuf Technol 48:1185–1203

    Article  Google Scholar 

  33. Duflou JR, Cattrysse D (2005) Automated tool selection for computer-aided process planning in sheet metal bending. CIRP Ann Manuf Technol 54(1):451–454

    Article  Google Scholar 

  34. Kim JH, Kim C, Chang YJ (2006) Development of a process sequence determination technique by fuzzy set theory for an electric product with piercing and bending operation. Int J Adv Manuf Technol 31:450–464

    Article  Google Scholar 

  35. Kannan TR, Shunmugam MS. Planner for sheet metal components to obtain optimal bend sequence using a genetic algorithm. Int J Comput Integr Manuf 21(7):790–802. doi 10.1080/09511920701678833

  36. Duflou J, Kruth JP, Van Oudheusden D (1999) Algorithms for the design verification and automatic process planning for bent sheet metal parts. CIRP Ann Manuf Technol 48(1):405–408

    Article  Google Scholar 

  37. Farsi MA, Arezoo B (2009) Development of a new method to determine bending sequence in progressive dies. Int J Adv Manuf Technol 43:52–60

    Article  Google Scholar 

  38. Streppel AH, Vin LJ, Brinkman J, Kals HJJ (1993) Suitability of sheet bending modeling techniques in CAPP applications. J Mater Process Technol 36:339–356

    Article  Google Scholar 

  39. DIN 1541 (1975) Kaltgewaltzes. Breitband und Blech aus unlegierten Stahlen, Masse, zulaissige Massund Formabweichungen

  40. DIN 1623 (1972) Kaltgewaltzes Band und Blech aus weichen unlegierten Stahlen, Gutevorschriften

  41. Little JDC, Murty KG, Sweeney DW, Karel C (1963) An algorithm for the traveling salesman problem. Oper Res 11:972–989

    Article  MATH  Google Scholar 

  42. Bluman AG (2003) Elementary statistics: step by step approach, 3rd edn. McGraw-Hill, NewYork, pp 300–420

    Google Scholar 

  43. Sobol IM (1995) Primer for the Monte Carlo method, 4th edn. CRC.Press, BocaRaton

    Google Scholar 

  44. ISO10303-1 (1994) Industrial automation systems and integration. Product data representation and exchange—Part 1: overview and fundamental principles. International Organization for Standardization, Geneva

    Google Scholar 

  45. International Standards Organization, ISO 146490–1 (2003) Industrial automation systems and integration—physical device control—data model for computerized numerical controllers. Part 1: overview and fundamental principles. ISO Geneva

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Faraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraz, Z., ul Haq, S.W., Ali, L. et al. Sheet-metal bend sequence planning subjected to process and material variations. Int J Adv Manuf Technol 88, 815–826 (2017). https://doi.org/10.1007/s00170-016-8823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8823-x

Keywords

Navigation