Skip to main content
Log in

A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ceramic particles typically do not have a sufficiently high wettability for incorporation into molten metal during aluminum matrix composite manufacturing. Metallic coatings on ceramic particles could improve their wettability by the molten aluminum and hence provide a better bonding between the reinforcement and matrix. In this study, micrometer-sized SiC particles were coated by copper, nickel, and cobalt metallic layers using electroless deposition method. These metallic layers were produced separately prior to ceramic incorporation into molten pure aluminum, in order to compare their effects on the microstructure and mechanical properties of the produced composites. The experimental results showed that copper was the most effective and nickel the least effective of these coating metals for incorporation of the SiC particles into the molten aluminum. It was additionally found that the composite, which contained the copper coated SiC particles, produced the highest microhardness and tensile strength, while that fabricated with the cobalt-coated SiC particles produced the lowest microhardness and tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivatsan T (1996) Microstructure, tensile properties and fracture behaviour of Al2O3 particulate-reinforced aluminium alloy metal matrix composites. J Mater Sci 31(5):1375–1388

    Article  Google Scholar 

  2. Smagorinski M, Tsantrizos P (2000) Development of light composite materials with low coefficients of thermal expansion. Mater Sci Technol 16(7–8):853–861

    Article  Google Scholar 

  3. Bhushan RK, Kumar S, Das S (2013) Fabrication and characterization of 7075 Al alloy reinforced with SiC particulates. Int J Adv Manuf Technol 65(5–8):611–624

    Article  Google Scholar 

  4. Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D (2015) A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating. Metall Mater Trans B 46(1):12–19

    Article  Google Scholar 

  5. Dandekar CR, Shin YC (2013) Experimental evaluation of laser-assisted machining of silicon carbide particle-reinforced aluminum matrix composites. Int J Adv Manuf Technol 66(9–12):1603–1610

    Article  Google Scholar 

  6. Roshan M, Mousavian TR, Ebrahimkhani H, Mosleh A (2013) Fabrication of Al-based composites reinforced with Al2O3–Tib2 ceramic composite particulates using vortex-casting method. J Min Metall B: Metall 49(3):299–305

    Article  Google Scholar 

  7. Ramanathan S (2013) Effect of silicon carbide volume fraction on the hot workability of 7075 aluminium-based metal–matrix composites. Int J Adv Manuf Technol 67(5–8):1711–1720

    Google Scholar 

  8. Valibeygloo N, Khosroshahi RA, Mousavian RT (2013) Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner Metall Mater 20(10):978–985

    Article  Google Scholar 

  9. Canakci A, Arslan F (2012) Abrasive wear behaviour of B4C particle reinforced Al2024 MMCs. Int J Adv Manuf Technol 63(5–8):785–795

    Article  Google Scholar 

  10. Naher S, Brabazon D, Looney L (2007) Computational and experimental analysis of particulate distribution during Al–SiC MMC fabrication. Compos A: Appl Sci Manuf 38(3):719–729

    Article  Google Scholar 

  11. Tzamtzis S, Barekar N, Hari Babu N, Patel J, Dhindaw B, Fan Z (2009) Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing—a novel rheo-process. Compos A: Appl Sci Manuf 40(2):144–151

    Article  Google Scholar 

  12. Naher S, Brabazon D, Looney L (2003) Simulation of the stir casting process. J Mater Process Technol 143:567–571

    Article  Google Scholar 

  13. Hashim J, Looney L, Hashmi M (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7

    Article  Google Scholar 

  14. Rajan T, Pillai R, Pai B, Satyanarayana K, Rohatgi P (2007) Fabrication and characterisation of Al–7Si–0.35 Mg/fly ash metal matrix composites processed by different stir casting routes. Compos Sci Technol 67(15):3369–3377

    Article  Google Scholar 

  15. Brabazon D, Browne D, Carr A (2002) Mechanical stir casting of aluminium alloys from the mushy state: process, microstructure and mechanical properties. Mater Sci Eng A 326(2):370–381

    Article  Google Scholar 

  16. Hashim J, Looney L, Hashmi M (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119(1):324–328

    Article  Google Scholar 

  17. Prabu SB, Karunamoorthy L, Kathiresan S, Mohan B (2006) Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J Mater Process Technol 171(2):268–273

    Article  Google Scholar 

  18. Mohammadpour M, Azari Khosroshahi R, Taherzadeh Mousavian R, Brabazon D (2014) Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram Int 40(6):8323–8332

    Article  Google Scholar 

  19. Beigi Khosroshahi N, Azari Khosroshahi R, Taherzadeh Mousavian R, Brabazon D (2014) Electroless deposition (ED) of copper coating on micron-sized SiC particles. Surf Eng 30(10):747–751

    Article  Google Scholar 

  20. Beigi Khosroshahi N, Azari Khosroshahi R, Taherzadeh Mousavian R, Brabazon D (2014) Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles. Ceram Int 40(8):12149–12159

    Article  Google Scholar 

  21. Leon C, Drew R (2002) The influence of nickel coating on the wettability of aluminum on ceramics. Compos A: Appl Sci Manuf 33(10):1429–1432

    Article  Google Scholar 

  22. Bhav Singh B, Balasubramanian M (2009) Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites. J Mater Process Technol 209(4):2104–2110

    Article  Google Scholar 

  23. Rams J, Urena A, Escalera M, Sánchez M (2007) Electroless nickel coated short carbon fibres in aluminium matrix composites. Compos A: Appl Sci Manuf 38(2):566–575

    Article  Google Scholar 

  24. Urena A, Rams J, Escalera M, Sánchez M (2007) Effect of copper electroless coatings on the interaction between a molten Al–Si–Mg alloy and coated short carbon fibres. Compos A: Appl Sci Manuf 38(8):1947–1956

    Article  Google Scholar 

  25. Hashim J, Looney L, Hashmi M (2001) The enhancement of wettability of SiC particles in cast aluminium matrix composites. J Mater Process Technol 119(1):329–335

    Article  Google Scholar 

  26. McAlister A (1989) The Al–Co (aluminum–cobalt) system. J Phase Equilib 10(6):646–650

    Google Scholar 

  27. Gusak AM, Zaporozhets T, Lyashenko YO, Kornienko S, Pasichnyy M, Shirinyan A (2010) Diffusion-controlled solid state reactions: in alloys, thin-films, and nanosystems. Wiley‐VCH Verlag GmbH and Co. KGaA, Boschstr. 12,69469, Weinheim, Germany John Wiley & Sons, p 105

  28. Shevchenko M, Berezutskii V, Ivanov M, Kudin V, Sudavtsova V (2014) Thermodynamic properties of alloys of the Al–Co and Al–Co–Sc systems. Russ J Phys Chem A 88(5):729–734

    Article  Google Scholar 

  29. Rajan T, Pillai R, Pai B (1998) Reinforcement coatings and interfaces in aluminium metal matrix composites. J Mater Sci 33(14):3491–3503

    Article  Google Scholar 

  30. Zhu S, Tang L, Cui Z, Wei Q, Yang X (2011) Preparation of copper-coated β-SiC nanoparticles by electroless plating. Surf Coat Technol 205(8):2985–2988

    Article  Google Scholar 

  31. Yih P, Chung D (1996) Silicon carbide whisker copper-matrix composites fabricated by hot pressing copper coated whiskers. J Mater Sci 31(2):399–406

    Article  Google Scholar 

  32. Leon C, Mendoza-Suarez G, Drew RA (2006) Wettability and spreading kinetics of molten aluminum on copper-coated ceramics. J Mater Sci 41(16):5081–5087

    Article  Google Scholar 

  33. Leon-Patino CA, Drew RA (2005) Role of metal interlayers in the infiltration of metal–ceramic composites. Curr Opinion Solid State Mater Sci 9(4):211–218

    Article  Google Scholar 

  34. Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156

    Article  Google Scholar 

  35. Mortensen A, Gungor MN, Cornie J, Flemings M (1986) Alloy microstructures in cast metal matrix composites. JOM 38(3):30–35

    Article  Google Scholar 

  36. Asthana R (1998) Processing effects on the engineering properties of cast metal-matrix composites. Adv Perform Mater 5(3):213–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taherzadeh Mousavian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavian, R.T., Damadi, S.R., Khosroshahi, R.A. et al. A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int J Adv Manuf Technol 81, 433–444 (2015). https://doi.org/10.1007/s00170-015-7246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7246-4

Keywords

Navigation