Skip to main content
Log in

Discrete and continuous models of linear elasticity: history and connections

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper tracks the development of lattice models that aim to describe linear elasticity of solids and the field equations of which converge asymptotically toward those of isotropic continua, thus showing the connection between discrete and continuum. In 1759, Lagrange used lattice strings/rod dynamics to show the link between the mixed differential-difference equation of a one-dimensional (1D) lattice and the partial differential equation of the associated continuum. A consistent three-dimensional (3D) generalization of this model was given much later: Poincaré and Voigt reconciled the molecular and the continuum approaches at the end of the nineteenth century, but only in 1912 Born and von Kármán presented the mixed differential-difference equations of discrete isotropic elasticity. Their model is a 3D generalization of Lagrange’s 1D lattice and considers longitudinal, diagonal and shear elastic springs among particles, so the associated continuum is characterized by three elastic constants. Born and von Kármán proved that the lattice equations converge to Navier’s partial differential ones asymptotically, thus being a formulation of continuous elasticity in terms of spatial finite differences, as for Lagrange’s 1D lattice. Neglecting shear springs in Born–Kármán’s lattice equals to Navier’s assumption of pure central forces among molecules: in the limit, the lattice behaves as a one-parameter isotropic solid (“rari-constant” theory: equal Lamé parameters, or, equivalently, Poisson’s ratio \(\upsilon =1/4\)). Hrennikoff and McHenry revisited the lattice approach with pure central interactions using a plane truss; the equivalent Born–Kármán’s lattice in plane stress in the limit tends to a continuum with Poisson’s ratio \(\upsilon = 1/3\). Contrary to McHenry–Hrennikoff’s truss, Born–Kármán’s lattice leads to a “free” Poisson’s ratio bounded by its “limit’ bound (\(\upsilon =1/4\) for plane strain or 3D elasticity; \(\upsilon =1/3\) for plane stress elasticity). Unfortunately, Born–Kármán’s lattice model does not comply with rotational invariance principle, for non-central forces. The consistent generalization of Lagrange’s lattice in 3D was achieved only by Gazis et al. considering an elastic energy that depends on changes in both lengths and angles of the lattice. An alternative consistent three-parameter elastic lattice is the Hrennikoff’s, with additional structure in the cell. We also discuss the capability of nonlocal continuous models to bridge the gap between continuum isotropic elasticity at low frequencies and lattice anisotropic elasticity at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Bergson, H.: L’évolution créatrice. Librairie Félix Alcan, Paris (1907)

    Google Scholar 

  2. Keynes, J.M.: Essays in Biography, reprinted in Johnson, E., Moggridge, D.E. (eds.), The Collected Writings of John Maynard Keynes, vol. 10, London, Macmillan, for the Royal Economic Society (1972) (initially 1926)

  3. Myshkis, A.D.: Mixed functional differential equations. J. Math. Sci. 129(5), 4111–4226 (2005)

    MathSciNet  Google Scholar 

  4. Lagrange, J.L.: Recherches sur la nature et la propagation du son, Miscellanea Philosophico-Mathematica Societatis Privatae Taurinensis I, 2rd Pagination, i-112 (1759) (see also Œuvres, Tome 1, 39–148)

  5. Lagrange, J.L.: Mécanique analytique, Paris, 1788—3rd edn, Mallet-Bachelier, Gendre et successeur de Bachelier, Imprimeur-Libraire du bureau des longitudes, de l’école Polytechnique, de l’école centrale des arts et manufactures, Paris (1853)

  6. Born, M., von Kármán, T.: On fluctuations in spatial grids. Physikalishe Zeitschrift 13, 297–309 (1912)

    MATH  Google Scholar 

  7. Burkhardt, H.: Entwicklungen nach oscillirenden Funktionen und Integration der Differentialgleichungen der mathematischen Physik. Jahresber. Deutsch. Math.-Verein. 10, 1–1804 (1908)

    Google Scholar 

  8. Cannon, J.T., Dostrovsky, S.: The Evolution of Dynamics: Vibration Theory from 1687 to 1742, Volume 6—Johann Bernoulli (1728), Studies in the History of Mathematics and Physical Sciences. Springer (1981)

  9. Bernoulli, J.: Dechordis vibrantibls. Commentarii Academiae Scientiarum Imperialis Petropolitanae 3, 13–28 (1728)

    Google Scholar 

  10. Filimonov, A.M., Kurchanov, P.F., Myshkis, A.D.: Some expected results in the classical problem of vibrations of the string with n beards when n is large. C. R. Acad. Sci. 313, 961–965 (1991)

    MATH  Google Scholar 

  11. Schrödinger, E.: Zur Dynamik elastisch gekoppelter Punktsysteme. Ann. Phys. 349(14), 916–934 (1914)

    MATH  Google Scholar 

  12. Seeger, A.: Historical note: on the simulation of dispersive wave propagation by elasticity models. Philos. Mag. 90(09), 1101–1104 (2010)

    ADS  Google Scholar 

  13. Andrianov, I., Koblik, S., Starushenko, G.: Transition from discrete to continuous media: the impact of symmetry changes on asymptotic behavior of waves. Symmetry 13(1008), 1–15 (2021)

    Google Scholar 

  14. Mühlich, U., Abali, B.E., Dell’Isola, F.: Commented translation of Erwin Schrödinger’s paper On the dynamics of elastically coupled point systems (Zur Dynamik elastisch gekoppelter Punktsysteme). Math. Mech. Solids 26(1), 133–147 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press (1999)

    MATH  Google Scholar 

  16. Rayleigh Lord: The Theory of Sound, 2 edn. London (1894)

  17. Challamel, N., Picandet, V., Collet, B., Michelitsch, T., Elishakoff, I., Wang, C.M.: Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua. Eur. J. Mech. A Solids 53, 107–120 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Born, M., Huang, K.: Dynamical theory of crystal lattices. Oxford University Press (1956)

    MATH  Google Scholar 

  19. Maradudin, A.A., Montroll, E.W., Weiss, G.H., Ipatova, I.P.: Theory of Lattice Dynamics in the Harmonic Approximation, 2nd edn. Academic Press (1971)

    Google Scholar 

  20. Askar, A.: Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity. World Scientific, Singapore (1986)

    Google Scholar 

  21. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    ADS  Google Scholar 

  22. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New-York (2002)

    MATH  Google Scholar 

  23. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley (2005)

    MATH  Google Scholar 

  24. Maugin, G.A.: Solitons in elastic solids (1938–2010). Mech. Res. Commun. 38, 341–349 (2011)

    MATH  Google Scholar 

  25. Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. Los Alamos Rep. 1940, 978 (1955)

    MATH  Google Scholar 

  26. Kruskal, M.D., Zabusky, N.J.: Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations. J. Math. Phys. 5, 231 (1964)

    ADS  MathSciNet  Google Scholar 

  27. Collins, M.A.: A quasicontinuum approximation for solitons in an atomic chain. Chem. Phys. Lett. 77, 342–347 (1981)

    ADS  MathSciNet  Google Scholar 

  28. Rosenau, P.: Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. A 118(5), 222–227 (1986)

    ADS  MathSciNet  Google Scholar 

  29. Kosevich, A.M.: The Crystal Lattice—Phonons, Solitons, Dislocations, Superlattices. Wiley (2005)

    Google Scholar 

  30. Abramian, A.K., Andrianov, I.V., Gaiko, V.A.: Nonlinear Dynamics of Discrete and Continuous Systems, Advanced Structural Materials, vol. 139. Springer (2021)

    MATH  Google Scholar 

  31. Boscovich, R.J.: Theoria Philosophiae Naturalis, 1st edn, Venice, 1763, English edition with a short life of Boscovich, Chicago and London (1922)

  32. Navier, L.: Sur les lois de l’équilibre et du mouvement des corps solides élastiques. Bulletin des sciences par la Société Philomatique de Paris, pp. 177–181 (1823) (in French)

  33. Cauchy, A.: Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle. Exercices de Mathématiques 3, 188–212 (1828). (in French)

  34. Poisson, S.D.: Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoire de l’Académie des Sciences de l’Institut de France 8, 357–570 (1829). (in French)

  35. Thomson, W., Kelvin, L.: On Boscovich’s theory. Nature 40, 545–547 (1889)

    ADS  MATH  Google Scholar 

  36. Kelvin, L.: On the elasticity of a crystal according to Boscovich. Proc. R. Soc. Lond. 54, 59–75 (1893)

    MATH  Google Scholar 

  37. Timoshenko, S.: History of Strength of Materials with a Brief Account of the History of Theory of Elasticity and Theory of Structures. McGraw-Hill (1953)

    MATH  Google Scholar 

  38. Green, G.: On the reflection and refraction of light at the common surface of two non-crystallized media. In: Ferrrers, N.M. (ed.) Mathematical Papers, pp. 245–269. MacMillan, London (1971)

    Google Scholar 

  39. Voigt, V.: Lehrbuch der Krystallphysik. B.G. Teubner, Leipzig (1910)

    Google Scholar 

  40. Foce, F.: The theory of elasticity between molecular and continuum approach in the XIXth century. In: Radelet-de-Grave, P., Benvenuto, E. (eds.) Between Mechanics and Architecture. Birkhaüser (1995)

    MATH  Google Scholar 

  41. Capecchi, D., Ruta, G., Trovalusci, P.: From classical to Voigt’s molecular models in elasticity. Arch. Hist. Exact Sci. 64, 525–559 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Capecchi, D., Ruta, G., Trovalusci, P.: Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch. Appl. Mech. 81, 1573–1584 (2011)

    ADS  MATH  Google Scholar 

  43. Voigt, V.: L’état actuel de nos connaissances sur l’élasticité des cristaux. In: Rapport présenté au Congrès International de Physique, Rassemblés et publiés par Ch. Guillaume, L. Poincaré (ed.), pp. 277–347. Gauthier-Villars, Paris (1900)

  44. Voigt, V.: Theoretische Studien über die Elasticitätsverhältnisse der Kristalle. Abhandlungen der Gesellschaft der Wissenschaften, Zu Göttingen-Mathematische Classe 34, 1–100 (1887)

    Google Scholar 

  45. Poincaré, H.: Leçons sur la théorie de l’élasticité. Carré, Paris (1892)

    MATH  Google Scholar 

  46. Ostoja-Sarzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)

    ADS  Google Scholar 

  47. Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18 (2001)

    ADS  Google Scholar 

  48. Zhang, Y.P., Challamel, N., Wang, C.M.: Modelling nano-plane structures with body force using Hencky bar-grid model, continualised nonlocal model and Eringen nonlocal model. Contin. Mech. Thermodyn. 33, 2453–2480 (2021)

    ADS  MathSciNet  Google Scholar 

  49. Blackman, M.: Contributions to the theory of the specific heat of crystals. II. On the vibrational spectrum of cubical lattices and its application to the specific heat of crystals. Proc. R. Soc. Lond. A 148, 384–406 (1935)

    ADS  MATH  Google Scholar 

  50. Montroll, E.W.: Dynamics of a square lattice. J. Chem. Phys. 15(8), 575–591 (1947)

    ADS  Google Scholar 

  51. De Launay, J.D.: Solid State Physics, vol. 2, F. Seitz and D. Turnbull (eds.), pp. 219–303. Academic Press (1956)

  52. Friesecke, G., Theil, F.: Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Friesecke, G., Matthies, K.: Geometric solitary waves in a 2D mass-spring lattice. Discrete Contin. Dyn. Syst. 1, 105–114 (2003)

    MathSciNet  MATH  Google Scholar 

  54. Patra, A.K., Gopalakrishnan, S., Ganguli, R.: A spectral multiscale method for wave propagation analysis: atomistic–continuum coupled simulation. Comput. Methods Appl. Mech. Eng. 278, 744–764 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Mikes, K., Jirasek, M.: Quasicontinuum method extended to irregular lattices. Comput. Struct. 192, 50–70 (2017)

    Google Scholar 

  56. Wieghardt, K.: Über einen Grenzübergang der Elastizitätslehre und seine Anwendung auf die Statik hochgradig statisch unbestimmter Fachwerke. In: Verhandtlungen des Vereinz z. Beförderung des Gewerbefleisses Abhandlungen, vol. 85, pp. 139-176 (1906)

  57. Riedel, W.: Beiträge zur Lösung des ebenen Problems eines elastischen Körpers mittels der Ayrischen Spannungsfunktion. Zeitschrift futr angewandte Mathematik und Mechanik 7(3), 169–188 (1927) (in German)

  58. Hrennikoff, A.: Plane stress and bending of plates by method of articulated framework. PhD Memory, Massachusetts Institute of Technology, MIT (1940)

  59. Hrennikoff, A.: Solutions of problems of elasticity by the framework method. J. Appl. Mech. 8, A169–A175 (1941)

    MathSciNet  MATH  Google Scholar 

  60. McHenry, D.: Discussion: Solution of problems of elasticity by the framework method, Hrennikoff A., ASME. J. Appl. Mech. 8, A169–A175 (1941), 9(3), A144–A145 (1942)

  61. McHenry, D.: A lattice analogy for the solution of stress problems. J. Inst. Civ. Eng. Lond. 2(5350), 59–82 (1943)

    Google Scholar 

  62. Lax, M.: E1. The relation between microscopic and macroscopic theories of elasticity. In: Wallis, R.F. (ed.) Lattice Dynamics, pp. 583–596. Pergamon Press, New-York (1965)

    Google Scholar 

  63. Gazis, D.C., Wallis, R.F.: Conditions for rotational invariance of a harmonic lattice. Phys. Rev. 151(2), 578–580 (1966)—see also Gazis and Wallis R.F., Erratum, Phys. Rev. 156, 1038 (1967)

  64. Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145(2), 637–645 (1966)

    ADS  Google Scholar 

  65. Keating, P.N.: Relationship between the macroscopic and microscopic theory of crystal elasticity. I. Primitive crystals. Phys. Rev. 152(2), 774–779 (1966)

    ADS  Google Scholar 

  66. Alexander, S.: Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998)

    ADS  Google Scholar 

  67. Gazis, D.C., Herman, R., Wallis, R.F.: Surface elastic waves in cubic crystals. Phys. Rev. 119, 533–544 (1960)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Clark, B.C., Gazis, D.C., Wallis, R.F.: Frequency spectra of body-centered cubic lattices. Phys. Rev. 134(6A), 1486–1491 (1964); erratum, Phys. Rev. B 2(8), 3443 (1970)

  69. Bose, G., Gupta, H.C., Tripathi, B.B.: Noncentral forces in the study of lattice dynamics of metals. J. Phys. F Met. Phys. 2, 426–432 (1972)

    ADS  Google Scholar 

  70. Kothari, L.S., Singhal, U.: Lattice dynamics of sodium—comparison of de Launay and CGW models. J. Phys. C Solid State Phys. 5, 293–299 (1972), Corrigendum. J. Phys. C Solid State Phys. 5, 791 (1972)

  71. Shukla, M.M.: The non equivalence of angular force models of de Launay and Clark, Gazis and Wallis for FCC metals. J. Phys. F Met. Phys. 8(6), 131–133 (1978)

    ADS  Google Scholar 

  72. Ramamurthy, V.: Nonequivalence of general tensor force and Clark, Gazis, and Wallis angular force models. Phys. Rev. B 57(21), 554–563 (1998)

    Google Scholar 

  73. Hrennikoff, A.: Framework method and its technique for solving plane stress problems. IABSE Publ. 9, 217–248 (1949)

    Google Scholar 

  74. Raoult, A., Caillerie, D., Mourad, A.: Elastic lattices: equilibrium, invariant laws and homogenization. Ann. Univ. Ferrara 54, 297–318 (2008)

    MathSciNet  MATH  Google Scholar 

  75. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. CRC Series. Taylor and Francis Group (2008)

    MATH  Google Scholar 

  76. Zhang, Y.P., Wang, C.M., Pedroso, D.M., Zhang, H.: Hencky bar-grid model for plane stress elasticity problems. J. Eng. Mech. 147(5), 04021021 (2021)

    Google Scholar 

  77. Nannapaneni, R.G., Nakshatrala, K.B., Stefaniuk, D., Krakowiak, K.J.: Discrete lattice modeling of wave propagation in materials with heterogeneous microstructures. J. Eng. Mech. 147(10), 04021075 (2021)

    Google Scholar 

  78. Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der elastischen Gelenkkette. Der Eisenbau 11, 437–452 (1920)

    Google Scholar 

  79. Wang, C.M., Zhang, H., Challamel, N., Pan, W.: Hencky-Bar-Chain/Net for Structural Analysis. World Scientific (2020)

    MATH  Google Scholar 

  80. Wu, C.W.: A discrete element method for linear and nonlinear stress and bifurcation problems of elastic structures. Doctoral dissertation, New Mexico State University (1985)

  81. Wifi, A.S., Obeid, K.A., Wu, C.W.: A simple discrete element mechanical model for the stability analysis of elastic structures. In: Current Advances in Mechanical Design & Production IV, pp. 149–156. Pergamon, Oxford (1989)

  82. El Naschie, M.S.: Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw-Hill, New York (1990)

    Google Scholar 

  83. Dell’Isola, F., Steigmann, D.J. (eds.): Discrete and Continuum Models for Complex Metamaterials. Cambridge University Press (2020)

    Google Scholar 

  84. Cauchy, A.: Sur les différences finies et les intégrales aux différences des fonctions entières d’une on de plusieurs variables. Exercices de mathématiques, pp. 155–159 (1828)

  85. Piola, G.: Nuova analisi per tutte le questioni della meccanica molecolare. Memorie di matematica e fisica della Societá italiana delle scienze 21, 155–163 (1836) (in Italian)

  86. Todhunter, I., Pearson, K.: A History of the Theory of Elasticity and of the Strength of Materials, from Galileo to the Present Time. Cambridge University Press 1886, vol. I, art. 769–772, pp. 422–425 (1886)

  87. Dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The complete works of Gabrio Piola: volume I commented English translation. In: Advanced Structured Materials, Vol. 38. Springer (2014)

  88. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(5), 887–928 (2015)

    MathSciNet  MATH  Google Scholar 

  89. Shokin, Yu.: The Method of Differential Approximation. Springer (1983)

    MATH  Google Scholar 

  90. Godunov, S.K., Ryabenkii, V.S.: Difference Schemes—An Introduction to the Underlying Theory. North-Holland, Amsterdam (1987)

    Google Scholar 

  91. Rosenstock, H.B., Newell, G.F.: Vibrations of a simple cubic lattice. I. J. Chem. Phys. 21, 1607–1608 (1953)

    ADS  Google Scholar 

  92. Montroll, E.W., Potts, R.B.: Effect of defects on lattice vibrations. Phys. Rev. 100(2), 525–543 (1955)

    ADS  MathSciNet  Google Scholar 

  93. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publications, New-York (1944)

    MATH  Google Scholar 

  94. Born, M.: Zur Raumgittertheorie des Diamanten. Ann. Phys. 44, 605–642 (1914)

    Google Scholar 

  95. Smith, H.M.J.: The theory of the vibrations and the Raman spectrum of the diamond lattice. Trans. R. Soc. A241, 105–145 (1948)

    ADS  Google Scholar 

  96. Nagendra Nath, N.S.: The dynamical theory of the diamond lattice I. Proc. Indian Acad. Sci. 1, 333–345 (1934)

    MATH  Google Scholar 

  97. Mindlin, R.D.: Lattice theory of shear modes of vibration and torsional equilibrium of simple-cubic crystal plates and bars. Int. J. Solids Struct. 6(6), 725–738 (1970)

    MATH  Google Scholar 

  98. Mindlin, R.D.: Theories of elastic continua and crystal lattice theories. In: Kröner, E (ed.), Mechanics of Generalized Continua, Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart, Germany, pp. 312–320, 1967. Springer (1968)

  99. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method—Volume 1: The Basis, 5th edn. Butterworth-Heineman, Oxford (2000)

    MATH  Google Scholar 

  100. Liu, W.K., Li, S., Park, H.S.: Eighty years of the finite element method: birth, evolution, and future. Arch. Comput. Meth. Eng. 29, 4431–4453 (2022)

    Google Scholar 

  101. Chen, H., Lin, E., Liu, Y.: A novel volume-compensated particle method for 2D elasticity and plasticity analysis. Int. J. Solids Struct. 51, 1819–1833 (2014)

    Google Scholar 

  102. Yin, H.: A simplified continuum particle model bridging interatomic potentials and elasticity of solids. J. Eng. Mech. 04022017, 148(5), 1–12 (2022)

  103. Challamel, N., Wang, C.M., Elishakoff, I.: Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis. Eur. J. Mech. A Solids 44, 125–135 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  104. Challamel, N., Wang, C.M., Zhang, H., Elishakoff, I.: Lattice-based nonlocal elastic structural models. In: Ghavanloo, E., Fazelzadeh, S.A., Marotti de Sciarra, F. (eds.) Size-Dependent Continuum Mechanics Approaches: Theory & Applications. Springer (2021)

    Google Scholar 

  105. Dell’Isola, F., Eremeyev, V.A.: Some introductory and historical remarks on mechanics of microstructured materials. In: Dell’Isola, F., Eremeyev, V.A., Porubov, A. (eds.) Advances in Mechanics of Microstructured Media and Structures, vol. 87. Springer (2018)

    MATH  Google Scholar 

  106. Kocsis, A., Challamel, N.: On the foundation of a generalized nonlocal extensible shear beam model from discrete interactions. Special Issue in honour of Prof. Maugin, Ed. H. Altenbach, J. Pouget, M. Rousseau, B. Collet and T. Michelitsch, Generalized Models and Non-classical Approaches in Complex Materials, Advanced Structured Materials. Springer (2018)

  107. Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

    ADS  Google Scholar 

  108. Lerbet, J., Challamel, N., Nicot, F., Darve, F.: Stability of Discrete Non-conservative Systems. ISTE Press, Elsevier (2020)

    MATH  Google Scholar 

  109. Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. McGraw-Hill, New York (1946)

    MATH  Google Scholar 

  110. Eringen, A.C., Kim, B.S.: Relation between non-local elasticity and lattice dynamics. Cryst. Lattice Defects 7, 51–57 (1977)

    Google Scholar 

  111. Challamel, N., Wang, C.M., Zhang, H., Kitipornchai, S.: Exact and nonlocal solutions for vibration of axial lattices with direct and indirect neighbouring interactions. J. Eng. Mech. 144(5), 04018025, 1–9 (2018)

  112. Boussinesq, J.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus Hebdomadaires de l’Académie des Sciences de Paris 72, 755–759 (1871)

    MATH  Google Scholar 

  113. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  114. Jaberolanssar, H., Peddieson, J., Jr.: On continuum representation of mechanical behaviour of discrete lattices. Mech. Res. Commun. 8(4), 251–257 (1981)

    Google Scholar 

  115. Andrianov, I.V., Awrejcewicz, J.: On the average continuous representation of an elastic discrete medium. J. Sound Vib. 264, 1187–1194 (2003)

    ADS  Google Scholar 

  116. Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media. Math. Probl. Eng. 986242, 1–35 (2010)

    MATH  Google Scholar 

  117. Kunin, I.A.: Elastic Media with Microstructure. Springer (1983)

    MATH  Google Scholar 

  118. Eringen, A.C.: Nonlocal continuum description of lattice dynamics and applications. Technical Report, Princeton University, 22 pp (1986)

  119. Challamel, N., Rakotomanana, L., Le Marrec, L.: A dispersive wave equation using non-local elasticity. C. R. Mécanique 337, 591–595 (2009)

    ADS  Google Scholar 

  120. Bacigalupo, A., Gambarotta, L.: Identification of non-local continua for lattice-like materials. Int. J. Eng. Sc. 159, 103430 (2021)

    MathSciNet  MATH  Google Scholar 

  121. Dean, P.: The vibrations of three two-dimensional lattices. Math. Proc. Camb. Philos. Soc. 59, 383–396 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  122. Phani, A.S.J., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)

    ADS  Google Scholar 

  123. Rosi, G., Auffray, N.: Continuum modelling of frequency dependent acoustic beam focussing and steering in hexagonal lattices. Eur. J. Mech. A Solids 77, 103803 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  124. Askes, H., Metrikine, A.V.: Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42, 187–202 (2005)

    MATH  Google Scholar 

  125. Challamel, N., Atanackovic, T., Zhang, Y.P., Wang, C.M.: A fractional nonlocal elastic model for lattice wave analysis. Mech. Res. Commun. 126(103999), 1–9 (2022)

    Google Scholar 

  126. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  127. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Google Scholar 

  128. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A 465, 2877–2196 (2009)

    MathSciNet  MATH  Google Scholar 

  129. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Google Scholar 

  130. Pollizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A Solids 61, 92–109 (2017)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Challamel.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Equivalence of the lattice-based gradient elasticity model and Mindlin equation for Gazis et al. model

Appendix A: Equivalence of the lattice-based gradient elasticity model and Mindlin equation for Gazis et al. model

The continualized lattice-based gradient elasticity equations derived for Gazis et al. lattice [67] are given by Eq. (58) which is here reformulated:

$$\begin{aligned}&\alpha \left( {\frac{\partial ^{2}u}{\partial x^{2}}+\frac{a^{2}}{12}\frac{\partial ^{4}u}{\partial x^{4}}} \right) \nonumber \\&\quad +\frac{\beta \,}{2}\left( {4\frac{\partial ^{2}u}{\partial x^{2}}+2\frac{\partial ^{2}u}{\partial y^{2}}+a^{2}\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{a^{2}}{3}\frac{\partial ^{4}u}{\partial x^{4}}+\frac{a^{2}}{6}\frac{\partial ^{4}u}{\partial y^{4}}+2\frac{\partial ^{2}u}{\partial z^{2}}+a^{2}\frac{\partial ^{4}u}{\partial x^{2}\partial z^{2}}+\frac{a^{2}}{6}\frac{\partial ^{4}u}{\partial z^{4}}} \right) \nonumber \\&\quad +4\,\gamma \,\left( {\frac{\partial ^{2}u}{\partial y^{2}}+\frac{a^{2}}{12}\frac{\partial ^{4}u}{\partial y^{4}}+\frac{\partial ^{2}u}{\partial z^{2}}+\frac{a^{2}}{12}\frac{\partial ^{4}u}{\partial z^{4}}} \right) \nonumber \\&\quad +\left( {\gamma +\frac{\beta }{2}} \right) \left( {4\frac{\partial ^{2}v}{\partial x\partial y}+\frac{2a^{2}}{3}\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{2a^{2}}{3}\frac{\partial ^{4}v}{\partial x^{3}\partial y}+4\frac{\partial ^{2}w}{\partial x\partial z}+\frac{2a^{2}}{3}\frac{\partial ^{4}w}{\partial x\partial z^{3}}+\frac{2a^{2}}{3}\frac{\partial ^{4}w}{\partial x^{3}\partial z}} \right) =\rho a\,\ddot{{u}} \end{aligned}$$
(A.1)

Equation (A.1) can be reformulated in two terms with the zero-th order and the second-order strain gradient expression:

$$\begin{aligned}&\left( {\alpha +2\beta } \right) \frac{\partial ^{2}u}{\partial x^{2}}+\left( {2\beta +4\gamma } \right) \,\left( {\frac{\partial ^{2}v}{\partial x\partial y}+\frac{\partial ^{2}w}{\partial x\partial z}} \right) +\left( {\beta +4\gamma } \right) \,\left( {\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\partial ^{2}u}{\partial z^{2}}} \right) \nonumber \\&\quad +\frac{a^{2}}{12}\left[ {\left( {\alpha +2\beta } \right) \frac{\partial ^{4}u}{\partial x^{4}}+\left( {\beta +4\gamma } \right) \,\left( {\frac{\partial ^{4}u}{\partial y^{4}}+\frac{\partial ^{4}u}{\partial z^{4}}} \right) +6\beta \left( {\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{\partial ^{4}u}{\partial x^{2}\partial z^{2}}} \right) } \right] \nonumber \\&\quad +\frac{a^{2}}{3}\left( {\beta +2\gamma } \right) \left( {\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{\partial ^{4}v}{\partial x^{3}\partial y}+\frac{\partial ^{4}w}{\partial x\partial z^{3}}+\frac{\partial ^{4}w}{\partial x^{3}\partial z}} \right) =\rho a\,\ddot{{u}} \end{aligned}$$
(A.2)

Equation (A.2) can be compared to Navier’s partial differential equation Eq. (13) with cubic symmetry, for the zero-th order medium.

$$\begin{aligned} \left\{ {\begin{array}{l} \;\alpha =a\,\left( {c_{11} -2c_{12} } \right) \\ \;\beta =ac_{12} \\ \;\gamma =\frac{a}{4}\left( {c_{44} -c_{12} } \right) \\ \end{array}} \right. \end{aligned}$$
(A.3)

Injecting the stiffness calibration Eq. (A.3) into the second-order expansion Eq. (A.2) of Gazis et al. lattice equations gives the gradient elasticity cubic model:

$$\begin{aligned}&c_{11} \frac{\partial ^{2}u}{\partial x^{2}}+\left( {c_{12} +c_{44} } \right) \,\left( {\frac{\partial ^{2}v}{\partial x\partial y}+\frac{\partial ^{2}w}{\partial x\partial z}} \right) +c_{44} \,\left( {\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\partial ^{2}u}{\partial z^{2}}} \right) \nonumber \\&\quad +\frac{a^{2}}{12}\left[ {c_{11} \frac{\partial ^{4}u}{\partial x^{4}}+c_{44} \,\left( {\frac{\partial ^{4}u}{\partial y^{4}}+\frac{\partial ^{4}u}{\partial z^{4}}} \right) +6\,c_{12} \left( {\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{\partial ^{4}u}{\partial x^{2}\partial z^{2}}} \right) } \right] \nonumber \\&\quad +\frac{a^{2}}{6}\left( {c_{12} +c_{44} } \right) \left( {\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{\partial ^{4}v}{\partial x^{3}\partial y}+\frac{\partial ^{4}w}{\partial x\partial z^{3}}+\frac{\partial ^{4}w}{\partial x^{3}\partial z}} \right) =\rho \,\ddot{{u}} \end{aligned}$$
(A.4)

This partial differential lattice-based equation exactly coincides with Eq. (10) page 315, of Mindlin [98].

In case of asymptotic linear elastic isotropy, the micro elastic parameters are related to the macro elastic parameters for Gazis et al. lattice by:

$$\begin{aligned} \left\{ {\begin{array}{l} \;\alpha =a\,\left( {c_{11} -2c_{12} } \right) =\left( {2\mu -\lambda } \right) \,a \\ \;\beta =ac_{12} =\lambda a \\ \;\gamma =\frac{a}{4}\left( {c_{44} -c_{12} } \right) =\frac{\mu -\lambda }{4}a \\ \end{array}} \right. \quad \text {with } \quad \left\{ {\begin{array}{l} \;c_{11} =\lambda +2\mu \\ \;c_{44} =\mu \\ \;c_{12} =\lambda \\ \end{array}} \right. \end{aligned}$$
(A.5)

The gradient elasticity lattice-based equations are rewritten using Lamé parameters:

$$\begin{aligned}&\left( {\lambda +2\mu } \right) \frac{\partial ^{2}u}{\partial x^{2}}+\left( {\lambda +\mu } \right) \,\left( {\frac{\partial ^{2}v}{\partial x\partial y}+\frac{\partial ^{2}w}{\partial x\partial z}} \right) +\mu \,\left( {\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\partial ^{2}u}{\partial z^{2}}} \right) \nonumber \\&\quad +\frac{a^{2}}{12}\left[ {\left( {\lambda +2\mu } \right) \frac{\partial ^{4}u}{\partial x^{4}}+\mu \,\left( {\frac{\partial ^{4}u}{\partial y^{4}}+\frac{\partial ^{4}u}{\partial z^{4}}} \right) +6\lambda \left( {\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{\partial ^{4}u}{\partial x^{2}\partial z^{2}}} \right) } \right] \nonumber \\&\quad +\frac{a^{2}}{6}\left( {\lambda +\mu } \right) \left( {\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{\partial ^{4}v}{\partial x^{3}\partial y}+\frac{\partial ^{4}w}{\partial x\partial z^{3}}+\frac{\partial ^{4}w}{\partial x^{3}\partial z}} \right) =\rho \,\ddot{{u}} \end{aligned}$$
(A.6)

It is worth mentioning that the gradient elasticity lattice-based equation cannot be cast in the linear isotropic strain gradient form which depends on 7 parameters, two classical Lamé parameters and 5 additional non-classical material parameters of the strain gradient form [126,127,128]. In fact, the generalized wave equation of the linear isotropic strain gradient medium can be shown to depend on two macroscopic additional length scales that depend on the 5 additional parameters [126, 127, 129, 130]:

$$\begin{aligned} \left( {1-l_{1}^{2} \Delta } \right) \mu \Delta u+\left( {1-l_{2}^{2} \Delta } \right) \left( {\lambda +\mu } \right) \left( {\partial _{x}^{2} u+\partial _{x} \partial _{y} v+\partial _{x} \partial _{z} w} \right) =\rho \,\ddot{{u}} \quad \text {with} \quad \Delta =\partial _{x}^{2} +\partial _{y}^{2} +\partial _{z}^{2} \end{aligned}$$
(A.7)

where \( l_{1}\) and \(l_{2}\) are the two additional length scales that depend on the 5 additional length scales of the linear isotropic strain gradient medium. Equation (A.7) can be equivalently rewritten using Mindlin’s notations [126]:

$$\begin{aligned}{} & {} \left( {\lambda +2\mu } \right) \left( {1-\tilde{{l}}_{1}^{2} \Delta } \right) \left( {\partial _{x}^{2} u+\partial _{x} \partial _{y} v+\partial _{x} \partial _{z} w} \right) \nonumber \\{} & {} \quad -\mu \left( {1-\tilde{{l}}_{2}^{2} \Delta } \right) \left( {\partial _{x} \partial _{y} v+\partial _{x} \partial _{z} w-\partial _{y}^{2} u-\partial _{z}^{2} u} \right) =\rho \,\ddot{{u}} \quad \text {with} \nonumber \\{} & {} \quad \left\{ {\begin{array}{l} \;\tilde{{l}}_{1}^{2} =\frac{l_{1}^{2} \mu +l_{2}^{2} \left( {\lambda +\mu } \right) }{\lambda +2\mu } \\ \;\tilde{{l}}_{2}^{2} =l_{1}^{2} \\ \end{array}} \right. \end{aligned}$$
(A.8)

Equation (A.7) can be also rewritten, with the full expression of the differential operators:

$$\begin{aligned}{} & {} \left( {\lambda +2\mu } \right) \partial _{x}^{2} u+\mu \left( {\partial _{y}^{2} u+\partial _{z}^{2} u} \right) +\left( {\lambda +\mu } \right) \left( {\partial _{x} \partial _{y} v+\partial _{x} \partial _{z} w} \right) \nonumber \\{} & {} \quad -\left[ {l_{1}^{2} \mu +l_{2}^{2} \left( {\lambda +\mu } \right) } \right] \partial _{x}^{4} u-\left[ {2l_{1}^{2} \mu +l_{2}^{2} \left( {\lambda +\mu } \right) } \right] \left( {\partial _{x}^{2} \partial _{y}^{2} u+\partial _{x}^{2} \partial _{z}^{2} u} \right) \nonumber \\{} & {} \quad -l_{1}^{2} \mu \left( {\partial _{y}^{4} u+\partial _{z}^{4} u} \right) -2l_{1}^{2} \mu \partial _{y}^{2} \partial _{z}^{2} u \nonumber \\{} & {} \quad -l_{2}^{2} \left( {\lambda +\mu } \right) \left[ {\partial _{x} \partial _{y}^{3} v+\partial _{y} \partial _{x}^{3} v+\partial _{x} \partial _{z}^{3} w+\partial _{z} \partial _{x}^{3} w+\partial _{x} \partial _{y}^{2} \partial _{z} w+\partial _{x} \partial _{y} \partial _{z}^{2} v} \right] =\rho \,\ddot{{u}} \end{aligned}$$
(A.9)

It is not possible to express the lattice-based gradient elasticity model Eq. (A.6) with the isotropic gradient elasticity equation Eq. (A.9). The zero-th order continuous medium asymptotically derived from Gazis et al. lattice can be enforced to be linear isotropic, but the second-order gradient elasticity medium cannot be isotropic (cubic gradient elasticity medium, as already characterized by Mindlin, 1968 for strain gradient elasticity models of the crystal class m3m). This also explains the loss of isotropy in the high frequency regime, even if the cubic lattice may behave isotropically in the low frequency regime.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challamel, N., Zhang, Y.P., Wang, C.M. et al. Discrete and continuous models of linear elasticity: history and connections. Continuum Mech. Thermodyn. 35, 347–391 (2023). https://doi.org/10.1007/s00161-022-01180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01180-x

Keywords

Navigation