Skip to main content
Log in

Considerations on alternative solutions for stress analysis of anisotropic materials: a beam case study

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Anisotropic materials are those that the value of a property depends on the direction of analysis. This article addresses both analytical and numerical stress computation for orthotropic beams under normal and shear loads. The analytical solution is based on potential polynomial functions and the present work establishes general strategies which allow systematic evaluation of the polynomial coefficients. The numerical approximation uses an alternative formulation of finite volumes based on an area weighted average associated with parabolic interpolation functions. The numerical scheme is verified against results obtained for orthotropic beams using both the analytical method and a classical finite volume approximation. Assessment of the global error based on the \(L_2\) norm indicates a high convergence rate and substantially smaller absolute differences when compared to the conventional finite volume approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zienkiewicz, O.C., Taylor, L.R.: The Finite Element Method, vol. 1, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  2. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco (1963)

    MATH  Google Scholar 

  3. Jia, P., Suo, Y., Jia, C.: Elastic solution of stress boundary problem for orthotropic materials. J. Phys.: Conf. Ser. 1637, 012052 (2020)

    Google Scholar 

  4. Hasebe, N.: Analysis of a mixed boundary value problem for an orthotropic elasticity using a mapping function. Int. J. Solids Struct. 208–209, 154–166 (2021)

    Article  Google Scholar 

  5. Hajimohamadi, M., Ghajar, R.: Stress intensity factors for cracks emanating from a circular hole in an infinite quasi-orthotropic plane. Fatigue Fract. Eng. Mater. Struct. 42, 743–751 (2019)

    Article  Google Scholar 

  6. Jia, P., Suo, Y., Jia, C.: General stress field for cracked orthotropic plate. J. Phys.: Conf. Ser. 1622, 012018 (2020)

    Google Scholar 

  7. Hashin, Z.: Plane anisotropic beams. J. Appl. Mech. Trans. ASME 34, 257–262 (1967)

    Article  ADS  Google Scholar 

  8. Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)

    Article  Google Scholar 

  9. Zhu, H., Sankar, B.V.: A combined Fourier–Galerkin method for the analysis of functionally graded beams. J. Appl. Mech. 71, 421–424 (2004)

    Article  ADS  Google Scholar 

  10. Huang, D.J., Ding, H.J., Chen, W.Q.: Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load. Appl. Math. Mech. 28, 855–860 (2007)

    Article  Google Scholar 

  11. Ding, H.J., Huang, D.J., Chen, W.Q.: Elasticity solutions for plane anisotropic functionally graded beams. Int. J. Solids Struct. 44, 176–196 (2007)

    Article  MathSciNet  Google Scholar 

  12. Mascia, N.T., Vanalli, L., Paccola, R.R., Scoaris, M.R.: Mechanical behaviour of wood beams with grain orientation. Mech. Comput. 29, 2839–2854 (2010)

    Google Scholar 

  13. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, 3rd edn. Hemisphere, New York (1980)

    MATH  Google Scholar 

  14. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, New York (2002)

    Book  Google Scholar 

  15. Onate, E., Cervera, M., Zienkiewicz, O.C.: A finite volume format for structural mechanics. Int. J. Numer. Methods Eng. 37, 181–201 (1994)

    Article  Google Scholar 

  16. Cardiff, P., Tuković, H.J., Ivankovć, A.: A block-coupled finite volume methodology for linear elasticity and unstructured meshes. Comput. Sctuct. 175, 100–122 (2016)

    Google Scholar 

  17. Nordbotten, J.M.: Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J. Numer. Anal. 53, 2605–2625 (2015)

    Article  MathSciNet  Google Scholar 

  18. Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Methods Eng. 112, 939–962 (2017)

    Article  MathSciNet  Google Scholar 

  19. Demirdžić, I.: A fourth-order finite volume method for structural analysis. Appl. Math. Model. 40, 3104–3114 (2016)

    Article  MathSciNet  Google Scholar 

  20. Demirdžić, I.: Finite volumes vs finite elements. There is a choice. Coupled Syst. Mech. 9, 5–28 (2020)

    Google Scholar 

  21. Cardiff, P., Demirdžić, I.: Thirty years of the finite volume method for solid mechanics. Comput. Methods Eng. (2021). https://doi.org/10.1007/s11831-020-09523-0

    Article  Google Scholar 

  22. Demirdžić, I., Horman, I., Martinović, D.: Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body. Comput. Methods Appl. Mech. Eng. 190(8–10), 1221–1232 (2000)

    Article  ADS  Google Scholar 

  23. Cardiff, P., Karač, A., Ivanković, A.: A large strain finite volume method for orthotropic bodies with general material orientations. Comput. Methods Appl. Mech. Eng. 268, 318–335 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  24. Golubović, A., Demirdžić, I., Muzaferija, S.: Finite volume analysis of laminated composite plates. Int. J. Numer. Methods Eng. 109(11), 1607–1620 (2017)

    Article  MathSciNet  Google Scholar 

  25. Fallah, N., Nikraftar, N.: Meshless finite volume method for the analysis of fracture problems in orthotropic media. Eng. Fract. Mech. 204, 46–62 (2018)

    Article  Google Scholar 

  26. Zdanski, P.S.B., Vaz Jr., M., Inácio, G.R.: A finite volume approach to simulation of polymer melt flow in channels. Eng. Comput. 25, 233–250 (2008)

    Article  Google Scholar 

  27. Martins, M.M., Vaz Jr., M., Zdanski, P.S.B.: A note on a derivative scheme for the finite volume method applied to incompressible viscous fluid. Continu. Mech. Thermodyn. 30, 943–952 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  28. Vaz Jr., M., Muñoz-Rojas, P.A., Filippini, G.: On the accuracy of nodal stress computation in plane elasticity using finite volumes and finite elements. Comput. Struct. 87, 1044–1057 (2009)

    Article  Google Scholar 

  29. Filippini, G., Maliska, C.R., Vaz Jr., M.: A physical perspective of the element-based finite volume method and FEM-Galerkin methods within the framework of the space of finite elements. Int. J. Numer. Methods Eng. 98, 24–43 (2014)

    Article  MathSciNet  Google Scholar 

  30. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  Google Scholar 

  31. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  32. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  33. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  34. Richter, H.G., Dallwitz, M.J.: Commercial Timbers: Goupia glabra Aublet (Cupiuba) (2020). https://www.delta-intkey.com/wood/en/www/celgogla.htm. Accessed 11 Sept 2020

  35. Augarde, C.E., Deeks, A.J.: The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis. Finite Elem. Anal. Des. 44, 595–601 (2008)

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Brazilian funding agency CNPq—(National Council for Scientific and Technological Development), Grant No. 303412/2016-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vaz Jr..

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This Appendix provides the coefficients for \(\phi _p(y)\) of Eq. (14) for a function potential of maximum order \(n=4\), corresponding to a prescribed normal load distribution equation at the beam boundaries with a maximum of second order. The coefficients for equations \(\phi _{n-1}(y)\), \(\phi _{n-2}(y)\), \(\ldots \), \(\phi _{n-4}(y)\) are obtained by back substitution from \(\phi _{n}(y)\), which are jointly determined by using the boundary conditions. The coefficients are as follows:

Coefficients for \(p=n\), \(\phi _{n}(y)= \sum _{k=0}^{3} a_{n}^{k}y^k\) are

$$\begin{aligned} a_n^0, ~ a_n^1,~ a_n^2 \quad \text {and} \quad a_n^3 \end{aligned}$$
(23)

Coefficients for \(p=n-1\), \(\phi _{n-1}(y)= \sum _{k=0}^{4} a_{n-1}^{k}y^k\) are

$$\begin{aligned} a_{n-1}^{4}=\frac{1}{2} n \frac{s_{16}}{s_{11}}_n a^{3}_{n} , \end{aligned}$$
(24)

Coefficients for \(p=n-2\), \(\phi _{n-2}(y)= \sum _{k=0}^{5} a_{n-2}^{k}y^k\) are

$$\begin{aligned} \begin{array}{l} \displaystyle a_{n-2}^{4}=-\frac{1}{12} n (n-1) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{2}_{n} + \frac{1}{2}(n-1) \frac{s_{16}}{s_{11}} a^{3}_{n-1} \\ \displaystyle a_{n-2}^{5}=-\frac{1}{20} n (n-1) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{3}_{n} + \frac{2}{5}(n-1) \frac{s_{16}}{s_{11}} a^{4}_{n-1} \end{array} . \end{aligned}$$
(25)

Coefficients for \(p=n-3\), \(\phi _{n-3}(y)= \sum _{k=0}^{6} a_{n-3}^{k}y^k\) are

$$\begin{aligned} \begin{array}{l} \displaystyle a_{n-3}^{4}=\frac{1}{12} n (n-1) (n-2)\frac{s_{26}}{s_{11}}a^{1}_{n} -\frac{1}{12} (n-1)(n-2) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{2}_{n-1} \\ \qquad \qquad \displaystyle +\frac{1}{2}(n-2) \frac{s_{16}}{s_{11}} a^{3}_{n-2} \\ \displaystyle a_{n-3}^{5}=\frac{1}{30} n (n-1) (n-2)\frac{s_{26}}{s_{11}}a^{2}_{n} -\frac{1}{20} (n-1)(n-2) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{3}_{n-1} \\ \qquad \qquad \displaystyle +\frac{2}{5}(n-2) \frac{s_{16}}{s_{11}} a^{4}_{n-2} \\ \displaystyle a_{n-3}^{6}=\frac{1}{60} n (n-1) (n-2)\frac{s_{26}}{s_{11}}a^{3}_{n} -\frac{1}{30} (n-1)(n-2) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{4}_{n-1} \\ \qquad \qquad \displaystyle +\frac{1}{3}(n-2) \frac{s_{16}}{s_{11}} a^{5}_{n-2} \end{array} . \end{aligned}$$
(26)

Coefficients for \(p=n-4\), \(\phi _{n-4}(y)= \sum _{k=0}^{7} a_{n-4}^{k}y^k\) are

$$\begin{aligned} \begin{array}{l} \displaystyle a_{n-4}^{4}= -\frac{1}{24} n (n-1) (n-2) (n-3)\frac{s_{22}}{s_{11}}a^{0}_{n} +\frac{1}{12} (n-1) (n-2) (n-3)\frac{s_{26}}{s_{11}}a^{1}_{n-1} \\ \qquad \qquad \displaystyle -\frac{1}{12} (n-2)(n-3) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{2}_{n-2} + \frac{1}{2}(n-3) \frac{s_{16}}{s_{11}} a^{3}_{n-3} \\ \displaystyle a_{n-4}^{5}= -\frac{1}{120} n (n-1) (n-2) (n-3)\frac{s_{22}}{s_{11}}a^{1}_{n} +\frac{1}{30} (n-1) (n-2) (n-3)\frac{s_{26}}{s_{11}}a^{2}_{n-1} \\ \qquad \qquad \displaystyle -\frac{1}{20} (n-2)(n-3) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{3}_{n-2} + \frac{2}{5}(n-3) \frac{s_{16}}{s_{11}} a^{4}_{n-3} \\ \displaystyle a_{n-4}^{6}= -\frac{1}{360} n (n-1) (n-2) (n-3)\frac{s_{22}}{s_{11}}a^{2}_{n} +\frac{1}{60} (n-1) (n-2) (n-3)\frac{s_{26}}{s_{11}}a^{3}_{n-1} \\ \qquad \qquad \displaystyle -\frac{1}{30} (n-2)(n-3) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{4}_{n-2} + \frac{1}{3}(n-3) \frac{s_{16}}{s_{11}} a^{5}_{n-3} \\ \displaystyle a_{n-4}^{7}= -\frac{1}{840} n (n-1) (n-2) (n-3)\frac{s_{22}}{s_{11}}a^{3}_{n} +\frac{1}{105} (n-1) (n-2) (n-3)\frac{s_{26}}{s_{11}}a^{4}_{n-1} \\ \qquad \qquad \displaystyle -\frac{1}{42} (n-2)(n-3) \left( 2\frac{s_{12}}{s_{11}} + \frac{s_{66}}{s_{11}} \right) a^{5}_{n-2} + \frac{2}{7}(n-3) \frac{s_{16}}{s_{11}} a^{6}_{n-3} \end{array} . \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebello, M.A., Zdanski, P.S.B. & Vaz, M. Considerations on alternative solutions for stress analysis of anisotropic materials: a beam case study. Continuum Mech. Thermodyn. 33, 2123–2140 (2021). https://doi.org/10.1007/s00161-021-01012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01012-4

Keywords

Navigation