Skip to main content
Log in

Homogenization of elastic materials containing self-similar rigid micro-inclusions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider elastic materials containing rigid micro-inclusions located along self-similar fractals. We use \(\Gamma \)-convergence methods in order to study the asymptotic behaviour of the structure with respect to vanishing parameters describing the thickness of the inclusions. We derive effective elastic behaviours of the elastic materials with boundary conditions describing discontinuities in the tractions across the self-similar fractal interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adkins, J.E.: Finite plane deformations of thin elastic sheets reinforced with inextensible cords. Philos. Trans. R. Soc. Lond. A 249, 125–150 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Adkins, J.E.: Cylindrically symmetrical deformations of incompressible elastic materials reinforced with inextensible cords. J. Ration. Mech. Anal. 5, 189–202 (1956)

    MathSciNet  MATH  Google Scholar 

  3. Adkins, J.E.: A three-dimensional problem for highly elastic materials subject to constraints. Q. J. Mech. Appl. Math. 11, 88–97 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Philos. Trans. R. Soc. Lond. A 248, 201–223 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Attouch, H.: Variational Convergence for Functions and Operators. Appl. Math. Series. Pitman, London (1984)

    MATH  Google Scholar 

  6. Capitanelli, R., Lancia, M.R., Vivaldi, M.A.: Insulating layers of fractal type. Differ. Integral Equ. 26(9/10), 1055–1076 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Charalambakis, N.: Homogenization techniques and micromechanics. A survey and perspectives. Appl. Mech. Rev. 63, 030803–030810 (2010)

    Article  ADS  Google Scholar 

  8. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. PNLDEA, vol. 8. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  9. Dormieux, L., Kondo, D.: Non linear homogenization approach of strength of nanoporous materials with interface effects. Int. J. Eng. Sci. 71, 102–110 (2013)

    Article  MATH  Google Scholar 

  10. El Jarroudi, M.: Asymptotic analysis of contact problems between an elastic material and thin-rigid plates. Appl. Anal. 89(5), 693–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Jarroudi, M.: Homogenization of a nonlinear elastic fibre-reinforced composite: a second gradient nonlinear elastic material. J. Math. Anal. Appl. 403, 487–505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. El Jarroudi, M., Brillard, A.: Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibres. IMA J. Appl. Math. 66, 567–590 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. El Jarroudi, M., Brillard, A.: Asymptotic behaviour of contact problems between two elastic materials through a fractal interface. J. Math. Pures Appl. 89, 505–521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. El Jarroudi, M., Er-Riani, M.: Homogenization of rectangular cross-section fibre-reinforced materials: bending-torsion effects. Contin. Mech. Thermodyn. 28, 1127–1155 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. El Jarroudi, M., Er-Riani, M., Lahrouz, A., Settati, A.: Homogenization of elastic materials reinforced by rigid notched fibres. Appl. Anal. 97(5), 705–738 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. El Jarroudi, M.: A third gradient elastic material resulting from the homogenization of a von Kármán ribbon-reinforced composite. Z. Angew. Math. Mech. (2018). https://doi.org/10.1002/zamm.201800104

    Google Scholar 

  17. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 241, 376–396 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A Math. Phys. Eng. Sci. 252, 561–569 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Eshelby, J.D.: Elastic inclusions and inhomogeneities. In: Sneddon, N., Hill, R. (eds.) Progressin Solid Mechanics, pp. 89–140. Amsterdam, North-Holland (1961)

    Google Scholar 

  20. Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  21. Harrisson, J., Norton, A.: Geometric integration on fractal curves in the plane. Indiana Univ. Math. J. 40(2), 567–594 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, J.H., Mura, T.: Recent results on the elasticity theory of inclusions. Appl. Mech. Rev. 47(1S), S10–S17 (1994)

    Article  ADS  Google Scholar 

  23. Huikun, J., Zheng, G.: Stokes’ theorem for domains with fractal boundary. J. Math. Anal. Appl. 355, 164–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jonsson, A., Wallin, H.: Boundary value problems and Brownian motion on fractals. Chaos Soli. Frac. 8(2), 191–205 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Jonsson, A., Wallin, H.: The dual of Besov spaces on fractals. Stud. Math. 112(3), 285–300 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jonsson, A., Wallin, H.: Function Spaces on Subsets of \(\mathbb{R}^{n}\). Mathematical Reports, vol. 2 (Part 1). Harwood Academic Publisher, London (1984)

    MATH  Google Scholar 

  27. Lancia, M.R.: A transmission problem with a fractal interface. Z. Anal. Anwend. 21, 113–133 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Landau, L., Lifchitz, E.: Théorie de l’élasticité. Editions Mir, Moscou (1967)

    MATH  Google Scholar 

  29. Liu, X., Yu, W.: A novel approach to analyze beam-like composite structures using mechanics of structure genome. Adv. Eng. Soft. 100, 238–251 (2016)

    Article  Google Scholar 

  30. Lobo, M., Perez, E.: Boundary homogenization of certain elliptic problems for cylindrical bodies. Bull. Sci. Math. Série 2 116, 399–426 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Malo, R.J.: Discrete extremal lengths of graph approximations of Sierpinski carpets. Thesis (Ph.D.), Montana State University (2015)

  32. Mortensen, A.: Concise Encyclopedia of Composite Materials. Elsevier, Amsterdam (2007)

    Google Scholar 

  33. Mosco, U., Vivaldi, M.A.: Fractal reinforcement of elastic membranes. Arch. Ration. Mech. Anal. 194, 49–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mosco, U., Vivaldi, M.A.: Thin fractal fibers. Math. Meth. Appl. Sci. 36, 2048–2068 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Mura, T.: Inclusion problems. Appl. Mech. Rev. 49(10), S118–S127 (1996)

    Article  Google Scholar 

  36. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  37. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  38. Ovid’ko, I.A., Sheinerman, A.G.: Elastic fields of inclusions in nanocomposite solids. Rev. Adv. Mater. Sci. 9, 17–33 (2005)

    Google Scholar 

  39. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, 241–257 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Rivlin, R.S.: Plane strain of a net formed by inextensible cords. J. Ration. Mech. Anal. 4, 951–974 (1955)

    MathSciNet  MATH  Google Scholar 

  41. Rivlin, R.S.: The deformation of a membrane formed by inextensible cords. Arch. Ration. Mech. Anal. 2, 447–476 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rouf, K., Liu, X., Yu, W.: Multiscale structural analysis of textile composites using mechanics of structure genome. Int. J. Solids Struct. 136–137, 89–102 (2018)

    Article  Google Scholar 

  43. Sili, A.: Homogenization of an elastic medium reinforced by anisotropic fibers. Asymptot. Anal. 42(1–2), 133–171 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  45. Yu, W.: Structure genome: fill the gap between materials genome and structural analysis. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2015) b. p. 0201

  46. Yu, W.: A unified theory for constitutive modeling of composites. J. Mech. Mater. Struct. 11(4), 379–411 (2016)

    Article  MathSciNet  Google Scholar 

  47. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  48. Zou, W.N., He, Q.C., Zheng, Q.S.: Inclusions in a finite elastic body. Int. J. Solids Struct. 49(13), 1627–1636 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha El Jarroudi.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Jarroudi, M., Er-Riani, M. Homogenization of elastic materials containing self-similar rigid micro-inclusions. Continuum Mech. Thermodyn. 31, 457–474 (2019). https://doi.org/10.1007/s00161-018-0700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0700-4

Keywords

Navigation