Skip to main content
Log in

Fractal Reinforcement of Elastic Membranes

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We describe a homogenization model of an elastic membrane reinforced by the inclusion of a fractal string. We follow a variational approach consisting in proving the convergence of certain energy functionals. This leads to the spectral convergence of a sequence of weighted second-order elliptic partial differential operators to a singular elliptic operator with a fractal term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H.: Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, London, 1984

  2. Barlow M.T., Perkins E.A.: Brownian motion on the Siepinski gasket. Prob. Theory Related Fields 79, 543–623 (1988)

    Article  MATH  Google Scholar 

  3. Brezzi, F., Gilardi, G.: FEM Mathematics. Finite Element Handbook (Eds. Kardestuncer H. and Norrie D.H.) McGraw-Hill, New York, 1987

  4. Cannon J.R., Meyer G.H.: On a diffusion in a fractured medium. SIAM J. Appl. Math. 3, 434–448 (1971)

    Article  MATH  Google Scholar 

  5. Fukushima, M.: Dirichlet forms, diffusion processes and spectral dimenion for nested fractals. Ideas and Methods in Mathematical Analysis, Stochastic and Applications (Eds. Albeverio et al.) Cambridge University Press, Cambridge, 151–161, 1992

  6. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, vol. 19, W. de Gruyter, Berlin, 1994

  7. Fukushima M., Shima T.: On a spectral analisys for the the Sierpinski gasket. Pot. Anal. 1, 1–5 (1992)

    Article  MATH  Google Scholar 

  8. Gilberg D., Trudinger N.S.: Elliptic Partial Differential Equation of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  9. Goldstein, S.: Random walks and diffusion on fractals. Percolation theory and ergodic theory of infinite particle systems, IMA, Minneapolis, Minn. 1984–1985; IMA Vol. Math. Appl. 8, Springer, Berlin, 121–129, 1987

  10. Hackbusch W.: Elliptic Differential Equations, S.C.M. vol. 18. Springer, Heidelberg (1992)

    Book  Google Scholar 

  11. Hutchinson J.E.: Fractals and selfsimilarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, Vol. 24. North-Holland/Kodansha Ltd, Amsterdam/Tokyo, 1989

  13. Jonsson A.: Brownian motion on fractals and function spaces. Math. Z. 222, 495–504 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jonsson A.: Dirichlet forms and Brownian motion penetrating fractals. Potential Analysis 13, 69–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jonsson A.: A trace theorem for the Dirichlet form on the Sierpiński gasket. Math. Z. 520, 599–609 (2005)

    Article  MATH  Google Scholar 

  16. Jonsson A., Wallin H.: Function Spaces on Subsets of R n, Part 1 (Math. Reports) vol. 2 . Harwood Academic Publisher, London (1984)

    Google Scholar 

  17. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  18. Kigami J.: Harmonic calculus on P.C.F. Self-similar sets. Trans. Am. Math. Soc. 335, 721–755 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Kozlov S.M.: Harmonization and Homogenization on Fractals. Comm. Math. Phys. 158, 158–431 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumagai T.: Brownian Motion Penetrating Fractals. J. Func. Anal. 170, 69–92 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kusuoka, S.: A diffusion process on fractal. Probabilistic methods in Mathematical Physics. Proceedings of Taniguchi Int. Symp. Katata and Kyoto, 1985, (Eds. Ito K. Ikeda N.) Kinokuniya Tokio 1887, 251–274

  22. Kusuoka S.: Diffusion Processes in Nested Fractals, Lect. Notes Math. 1567. Springer, Berlin (1993)

    Google Scholar 

  23. Lancia M.R.: A transmission problem with a fractal interface. Z. Anal. und Ihre Anwend. 21, 113–133 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lancia M.R., Vernole P.: Convergence results for parabolic transmission problems across highly conductive layers with small capacity. A.M.S.A 16(2), 411–445 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Lancia M.R., Vivaldi M.A.: Asymptotic convergence for energy forms. Adv. Math. Sc. Appl. 13, 315–341 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Lindstrøm T.: Brownian motion on nested fractals. Memoires AMS. 420, 83 (1990)

    MATH  Google Scholar 

  27. Lindstrøm, T.: Brownian motion penetrating the Sierpiński gasket. Asymptotic problems in probability theory: stochastic models and diffusions on fractals. (Eds. Elworthy K.D. and Ikeda N.). Longmann, London, 248–278, 1993

  28. Mosco U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mosco U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123(2), 368–421 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mosco U.: Variational fractals. Ann. Scuola Norm. Sup. Pisa, Special Volume in Memory of E. De Giorgi 25(4), 683–712 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Mosco U., Vivaldi M.A.: An example of fractal singular homogenization. Georgian Math. J. 14(1), 169–194 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Neéas J.: Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967)

    Google Scholar 

  33. Pham Huy H., Sanchez–Palencia E.: Phénomènes des transmission à travers des couches minces de conductivitéélevée. J. Math. Anal. Appl. 47, 284–309 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tomisaki, M.: Dirichlet forms associated with direct product diffussion processes. Functional Analysis in Markov Processes. Lecture Notes in Math. vol. 923. Springer, Berlin, 1982

  35. Triebel, H.: Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monographs in athematics, vol. 91, Birkhäuser, Basel, 1997

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Mosco.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosco, U., Vivaldi, M.A. Fractal Reinforcement of Elastic Membranes. Arch Rational Mech Anal 194, 49–74 (2009). https://doi.org/10.1007/s00205-008-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0145-1

Keywords

Navigation