Skip to main content

Advertisement

Log in

Application of energy measures in detection of local deviations in mechanical properties of structural elements

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The identification of local damages in structural elements is considered. In the proposed formulation, the damages are represented as local changes in structural stiffness and they are defined by a set of parameters. The main effort of this work is directed to the use of global measures of energy to indicate the local changes of stiffness. An idea of use of additional design parameters in order to optimize the experiment and to enlarge the sensitivity of objective functional with respect to damage parameters is applied. In order to accomplish this goal, the distribution of energy within the structural domain is optimized. Two cases, namely the eigenproblem and the structure under the static external load, are discussed. Simple illustrative example of identification of damage is discussed, and numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitri, M., Morassi, A.: Modal testing and structural identification of a planar truss. Proc. ISMA23 Noise Vib. Eng. 1, 1:135–143 (1998)

    Google Scholar 

  2. Andreaus, U., Colloca, M., Iacoviello, D.: Damage detection in a human premolar tooth from image processing to finite element analysis. In: Jorge, R.M.N., Santos, S.M., Tavares, J.M.R.S., Campos, R., Vaz, M.A.P. (eds.) Biodental Engineering, pp. 41–46. CRC Press (2009)

  3. Andreaus, U., Baragatti, P.: Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams. J. Strain Anal. Eng. Des. 44(7), 595–608 (2009)

    Article  Google Scholar 

  4. Andreaus, U., Baragatti, P.: Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech. Syst. Signal Process. 31, 382–404 (2012)

    Article  ADS  Google Scholar 

  5. Mróz, Z., Lekszycki, T.: Identification of damage in structures using parameter dependent modal response. In: Proceedings of Noise and Vibration Engineering ISMA23, vol. 1 (1998)

  6. MAIA, N.M.M., SILVA, J.M.M., ALMAS, E.A.M., SAMPAIO, R.P.C.: Damage detection in structures: from mode shape to frequency response function methods. Mech. Syst. Signal Process. 17(3), 489–498 (2003)

    Article  ADS  Google Scholar 

  7. Kim, H., Melhem, H.: Damage detection of structures by wavelet analysis. Eng. Struct. 26(3), 347–362 (2004)

    Article  Google Scholar 

  8. Curadelli, R.O., Riera, J.D., Ambrosini, D., Amani, M.G.: Damage detection by means of structural damping identification. Eng. Struct. 30(12), 3497–3504 (2008)

    Article  Google Scholar 

  9. Ciancio, D., Carol, I., Cuomo, M.: Crack opening conditions at ‘corner nodes’ in fe analysis with cracking along mesh lines. Eng. Fract. Mech. 74(13), 1963–1982 (2007)

    Article  Google Scholar 

  10. Contrafatto, L., Cuomo, M., Fazio, F.: An enriched finite element for crack opening and rebar slip in reinforced concrete members. Int. J. Fract. 178(1–2), 33–50 (2012)

    Article  Google Scholar 

  11. Mikami, S., Beskhyroun, S., Oshima, T.: Wavelet packet based damage detection in beam-like structures without baseline modal parameters. Struct. Infrastruct. Eng. 7(3), 211–227 (2011)

    Article  Google Scholar 

  12. He, K., Zhu, W.D.: Structural damage detection using changes in natural frequencies: theory and applications. J. Phys. Conf. Ser. 305, 33–50 (2012)

    Google Scholar 

  13. Li, J., Baisheng, W., Zeng, Q.C., Lim, C.W.: A generalized flexibility matrix based approach for structural damage detection. J. Sound Vib. 329(22), 4583–4587 (2010)

    Article  ADS  Google Scholar 

  14. Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  15. Fleck, NA, Deshpande, VS, Ashby, MF: Micro-architectured materials: past, present and future. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 466, no . 2121, The Royal Society, pp. 2495–2516 (2010)

  16. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laudato, M., Di Cosmo, F.: Euromech 579 Arpino 3–8 April 2017: generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly) inextensible fibers—a review of presentations and discussions. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0654-6

  18. Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 21 (2016)

    Google Scholar 

  19. Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Turco, E., Barcz, K., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence. Z. Angew. Math. Phys. 67(5), 122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from reuss’ to voigt’s bound. Appl. Mech. Rev. 68(5), 050801 (2016)

    Article  ADS  Google Scholar 

  22. Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25), 4197–4216 (2013)

    Article  Google Scholar 

  23. Caprino, S., Esposito, R., Marra, R., Pulvirenti, M.: Hydrodynamic limits of the vlasov equation. Commun. Partial Differ. Equ. 18(5), 805–820 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. De Masi, A., Olla, S.: Quasi-static hydrodynamic limits. J. Stat. Phys. 161(5), 1037–1058 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Super-hydrodynamic limit in interacting particle systems. J. Stat. Phys. 155(5), 867–887 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pulvirenti, M.: Kinetic Limits for Stochastic Particle Systems. Lecture Notes in Mathematics. Springer, Berlin (1996)

    MATH  Google Scholar 

  29. Esposito, R., Pulvirenti, M.: From particles to fluids. Handb. Math. Fluid Dyn. 3, 1–82 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la d’alembert and á la cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A 471(2183), 20150415 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Alibert, J.-J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a Hencky-type model predict the mechanical behavior of pantographic lattices? In: Mathematical Modelling in Solid Mechanics, Springer, pp. 285–311 (2017)

  37. dell’Isola, F., Cuomo, M., Greco, L., DellaCorte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 81, 1–31 (2016)

    Google Scholar 

  38. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steigmann, D. J, dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. https://doi.org/10.1007/s10409-015-0413-x

  40. Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  41. di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic Metamaterials Based on Local Resonances: Homogenization, Optimization and Applications, pp. 247–274. Springer, Cham (2018)

    Google Scholar 

  42. Dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Turco, E., Giorgio, I., Misra, A., Dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 171153 (2017)

    Article  ADS  Google Scholar 

  44. Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L.: A 1D Continuum Model for Beams with Pantographic Microstructure: Asymptotic Micro–Macro Identification and Numerical Results, pp. 43–74. Springer, Cham (2018)

    Google Scholar 

  45. dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2d lattices: a numerical analysis on static response and wave propagation. Proc. Estonian Acad. Sci. 64(3), 219–225 (2015)

    Article  Google Scholar 

  46. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  47. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  48. Rahali, Y., Giorgio, I., Ganghoffer, J.F., Dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. In: Proceedings of the Estonian Academy of Sciences (2015)

  50. Barchiesi, E., Placidi, L.: A review on models for the 3d statics and 2d dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, Springer, pp. 239–258 (2017)

  51. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103, 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 472, no. 2185 (2016)

  53. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517735695

  54. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. J. Appl. Math. Mech. 1, 16 (2013)

    MATH  Google Scholar 

  55. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  56. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. (2014). https://doi.org/10.1007/s00161-014-0338-9

  58. Misra, A., Singh, V.: Micromechanical model for viscoelastic-materials undergoing damage. Contin. Mech. Thermodyn. 25, 1–16 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

  60. Yang, Y., Ching, W.Y., Misra, A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  61. Baruch, M.: Correction of stiffness matrix using vibration tests. AIAA J. 20, 441–442 (1982)

    Article  ADS  Google Scholar 

  62. Cawley, P., Adams, R.D.: The location of defects in structures from measurements of natural frequencies. J. Strain Anal. 14, 49–57 (1979)

    Article  Google Scholar 

  63. Gudmondson, P.: Eigenfrequency changes of structures due to cracks, nothces, or other geometrical changes. J. Mech. Phys. Solids 30(5), 339–353 (1982)

    Article  ADS  Google Scholar 

  64. Hassiotis, S., Jeong, G.D.: Identification of stiffness reduction using natural frequencies. J. Eng. Mech. 121, 1106–1113 (1995)

    Article  Google Scholar 

  65. Zhang, L.-M., Wu, Q., Link, M.: A structural damage location and extend identification based on strain energy approach. Proc. ISMA23 Noise Vib. Eng. 1, 107–115 (1998)

    Google Scholar 

  66. Lekszycki, T.: Application of optimality conditions in modeling of the adaptation phenomenon of bones. In: Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization (1999)

  67. Misra, A., Singh, V.: Micromechanical model for viscoelastic materials undergoing damage. Contin. Mech. Thermodyn. 25, 1–16 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogeneous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Ration. Mech. Anal. 87, 1495–1510 (2017)

    Google Scholar 

  70. Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM J. Appl. Math. Mech. 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. (2017). https://doi.org/10.1007/s10659-017-9660-3

  74. Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319, pp. 012018. IOP Publishing (2011)

  75. dell’Isola, F., Madeo, A., Seppecher, P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  76. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2d fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  77. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2d models for the description of pantographic fabrics. Z. Angew. Math. Phys. 67(5), 121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM J. Appl. Math. Mech. 94(10), 862–877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4–5), 623 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Madeo, A., Placidi, L., Rosi, G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Res. Nondestruct. Eval. 25(2), 99–124 (2014)

    Article  ADS  Google Scholar 

  81. Misra, A.: Effect of asperity damage on shear behavior of single fracture. Eng. Fract. Mech. 69(17), 1997–2014 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Laudato.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekszycki, T., Di Cosmo, F., Laudato, M. et al. Application of energy measures in detection of local deviations in mechanical properties of structural elements. Continuum Mech. Thermodyn. 31, 413–425 (2019). https://doi.org/10.1007/s00161-018-0695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0695-x

Keywords

Navigation