Skip to main content

Advertisement

Log in

Finite gradient elasticity and plasticity: a constitutive thermodynamical framework

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In Bertram (Continuum Mech Thermodyn. doi:10.1007/s00161-014-0387-0, 2015), a mechanical framework for finite gradient elasticity and plasticity has been given. In the present paper, this is extended to thermodynamics. The mechanical theory is only briefly repeated here. A format for a rather general constitutive theory including all thermodynamic fields is given in a Euclidian invariant setting. The plasticity theory is rate-independent and unconstrained. The Clausius–Duhem inequality is exploited to find necessary and sufficient conditions for thermodynamic consistency. The residual dissipation inequality restricts the flow and hardening rules in combination with the yield criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 52, 353–374 (1998)

    MATH  Google Scholar 

  2. Bertram A., Svendsen B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53(6), 653–675 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bertram, A.: Elasticity and plasticity of large deformations—an introduction. Springer, Berlin (2005, 2008, 2012)

  4. Bertram A., Forest S.: Mechanics based on an objective power functional. Techn. Mech. 27(1), 1–17 (2007)

    Google Scholar 

  5. Bertram A., Krawietz A.: On the introduction of thermoplasticity. Acta Mech. 223(10), 2257–2268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertram, A.: The mechanics and thermodynamics of finite gradient elasticity and plasticity. Preprint Otto-von-Guericke Universität Magdeburg. http://www.uni-magdeburg.de/ifme/l-festigkeit/pdf/1/Preprint_Gradientenplasti_finite_16.10.12.pdf (2013)

  7. Bertram A., Forest S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26, 269–286 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bertram, A.: Finite gradient elasticity and plasticity—a constitutive mechanical framework. Contin. Mech. Thermodyn. doi:10.1007/s00161-014-0387-0 (2015)

  9. Cardona J.-M., Forest S., Sievert R.: Towards a theory of second grade thermoelasticity. Extr. Math. 14, 127–140 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Ciarletta P., Maugin G.A.: Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling. I. J. Nonlinear Mech. 46, 1341–1346 (2011)

    Article  Google Scholar 

  11. Clayton J.D., McDowell D.L., Bammann D.J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006)

    Article  MATH  Google Scholar 

  12. Cleja-Ţigoiu S.: Elasto-plastic materials with lattice defects modeled by second-order deformations with non-zero curvature. Int. J. Fract. 166, 61–75 (2010)

    Article  MATH  Google Scholar 

  13. Ekh M., Grymer M., Runesson K., Svedberg T.: Gradient crystal plasticity as part of the computational modelling of polycrystals. Int. J. Numer. Methods Eng. 72, 197–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  15. Forest S., Aifantis E.C.: Some links between recent gradient thermo-elasto-plasticity theories and thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  16. Gurtin M.E.: Thermodynamics and the possibility of spacial interaction in elastic materials. Arch. Rat. Mech. Anal. 19(5), 339–352 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurtin M.E., Fried E., Anand L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  18. Mindlin R.D.: Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  19. Toupin R.A.: Elastic materials with couple stresses. Arch. Rat. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Truesdell, C.A.; Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed). Handbuch der Physik, Vol. III/3. Springer, Berlin (1965), 2nd edn. (1992), 3rd edn. by S. Antman (2004)

  21. Ván P., Berezovski A., Papenfuss C.: Thermodynamic approach to generalized continua. Contin. Mech. Thermodyn. 26(3), 403–420 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Bertram.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertram, A. Finite gradient elasticity and plasticity: a constitutive thermodynamical framework. Continuum Mech. Thermodyn. 28, 869–883 (2016). https://doi.org/10.1007/s00161-015-0417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0417-6

Keywords

Navigation