Skip to main content
Log in

Ordered rate constitutive theories for thermoviscoelastic solids without memory in Lagrangian description using Gibbs potential

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The paper presents rate constitutive theories for finite deformation of homogeneous, isotropic, compressible, and incompressible thermoviscoelastic solids without memory in Lagrangian description derived using the second law of thermodynamics expressed in terms of Gibbs potential Ψ. To ensure thermodynamic equilibrium during evolution, the rate constitutive theories must be derived using entropy inequality [as other three conservation and balance laws are do not provide a mechanism for deriving constitutive theories for the deforming matter (Surana in Advanced mechanics of continuua. in preparation, 2014)]. The two forms of the entropy inequality in Ψ derived using conjugate pairs \({\mathbf{\sigma}^*}\), \({[\dot{J}]}\) : first Piola–Kirchhoff stress tensor and material derivative of the Jacobian of deformation and \({\mathbf{\sigma}^{[0]}}\), \({\dot{\mathbf{\varepsilon}}_{[0]}}\) ; second Piola–Kirchhoff stress tensor and material derivative of Green’s strain tensor are precisely equivalent as the conjugate pairs \({\mathbf{\sigma}^*}\), \({[\dot{J}]}\) and \({\mathbf{\sigma}^{[0]}}\), \({\dot{\mathbf{\varepsilon}}_{[0]}}\) are transformable from each other. In the present work, we use \({\mathbf{\sigma}^{[0]}}\), \({\dot{\mathbf{\varepsilon}}_{[0]}}\) as conjugate pair. Two possible choices of dependent variables in the constitutive theories: Ψ, η, \({\mathbf{\sigma}^{[0]}}\), \({\mathbf{q}}\) and Ψ, η, \({\mathbf{\varepsilon}_{[0]}}\), \({\mathbf{q}}\) (in which η is entropy density and \({\mathbf{q}}\) is heat vector) are explored based on conservation and balance laws. It is shown that the choice of Ψ, η, \({\mathbf{\varepsilon}_{[0]}}\), \({\mathbf{q}}\) is essential when the entropy inequality is expressed in terms of Ψ. The arguments of these dependent variables are decided based on desired physics. Viscoelastic behavior requires considerations of at least \({\mathbf{\varepsilon}_{[0]}}\) and \({\dot{\mathbf{\varepsilon}}_{[0]}}\) (or \({\mathbf{\varepsilon}_{[1]}}\)) in the constitutive theories. We generalize and consider strain rates \({\mathbf{\varepsilon}_{[i]}}\); i = 0, 1, …, n−1 as arguments of the dependent variables in the derivations of the ordered rate theories of up to orders n. At the onset, \({\mathbf{\sigma}^{[0]}}\), \({\mathbf{\varepsilon}_{[i]}}\) ; i = 0, 1, …, n−1, θ and \({\mathbf{g}}\) are considered as arguments of Ψ, η, \({\mathbf{\varepsilon}_{[n]}}\) and \({\mathbf{q}}\). When \({\dot{\Psi}}\) is substituted in the entropy inequality, the resulting conditions eliminate η as a dependent variable, reduce arguments of some of the dependent variables in the constitutive theory etc. but do not provide a mechanism to derive constitutive theories for \({\mathbf{\varepsilon}_{[i]}}\) and \({\mathbf{q}}\). The stress tensor \({\mathbf{\sigma}^{[0]}}\) is decomposed into equilibrium stress \({{}_e \mathbf{\sigma}^{[0]}}\) and deviatoric stress \({{}_d \mathbf{\sigma}^{[0]}}\). Upon substituting this in the entropy inequality, we finally arrive at the inequality that must be satisfied by \({{}_e \mathbf{\sigma}^{[0]}}\), \({{}_d \mathbf{\sigma}^{[0]}}\) and \({\mathbf{q}}\). Derivations of the constitutive theory for \({{}_e \mathbf{\sigma}^{[0]}}\) follow directly from \({{}_e \mathbf{\sigma}^{(0)}}\), equilibrium Cauchy stress tensor, and the constitutive theory for \({\mathbf{\varepsilon}_{[n]}}\) is derived using the theory of generators and invariants. Constitutive theories for the heat vector \({\mathbf{q}}\) of up to orders n that are consistent (in terms of the argument tensors) with the constitutive theories for \({\mathbf{\varepsilon}_{[n]}}\) are also derived. Many simplified forms of the rate theories of orders n are presented. Material coefficients are derived by considering Taylor series expansions of the coefficients in the linear combinations representing \({\mathbf{\varepsilon}_{[n]}}\) and \({\mathbf{q}}\) using the combined generators of the argument tensors about a known configuration \({\underline{\Omega}}\) in the combined invariants of the argument tensors and temperature. It is shown that the rate constitutive theories of order one (n = 1) when further simplified results in constitutive theories that resemble currently used theories but are in fact different. The solid materials characterized by these theories have mechanisms of elasticity and dissipation but have no memory, i.e., no relaxation behavior or rheology. Fourier heat conduction law is shown to be an over-simplified case of the rate theory of order one for \({\mathbf{q}}\). The paper establishes when there is equivalence between the constitutive theories derived here using Ψ and those presented in Surana et al. (Acta Mech 224(11):2785—2816, 2013), that are derived using Helmholtz free energy density Φ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surana, K.S.: Advanced Mechanics of Continuua. (Manuscript of the textbook in preparation, 2014)

  2. Surana K.S., Moody T.C., Reddy J.N.: Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids without memory. Acta Mech. 224(11), 2785–2816 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Prager W.: Strain Hardening under Combined Stresses. J. Appl. Phys. 16, 837–840 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  4. Reiner M.: A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Rivlin R.S., Ericksen J.L.: Stress–deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MATH  MathSciNet  Google Scholar 

  6. Rivlin R.S.: Further remarks on the stress–deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 681–702 (1955)

    MATH  MathSciNet  Google Scholar 

  7. Todd J.A.: Ternary quadratic types. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 399–456 (1948)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Wang C.C.: On representations for isotropic functions, Part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  MATH  Google Scholar 

  9. Wang C.C.: On representations for isotropic functions, Part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  10. Wang C.C.: A new representation theorem for isotropic functions, Part I and Part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  MATH  Google Scholar 

  11. Wang C.C.: Corrigendum to ‘Representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  12. Smith G.F.: On a fundamental error in two papers of C.C. Wang, ‘On representations for isotropic functions, Part I and Part II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  MATH  Google Scholar 

  13. Smith G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MATH  Google Scholar 

  14. Spencer A.J.M., Rivlin R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  15. Spencer A.J.M., Rivlin R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  16. Spencer, A.J.M.: Theory of invariants. In: Eringen A.C. (ed.) Treatise on Continuum Physics, I’, Chapter 3. Academic Press, London (1971)

  17. Boehler J.P.: On irreducible representations for isotropic scalar functions. J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 57, 323–327 (1977)

    MATH  MathSciNet  Google Scholar 

  18. Zheng Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MATH  Google Scholar 

  19. Zheng Q.S.: On Transversely Isotropic, Orthotropic and Relatively Isotropic Functions of Symmetric Tensors, Skew-Symmetric Tensors, and Vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

  20. Eringen A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  21. Eringen A.C.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  22. Gurtin, M.: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. A Math. Phys. Eng. Sci. 440(1909), 323–343 (1993)

  23. Schapery R.A.: Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media. J. Appl. Phys. 35(5), 1451–1465 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  24. Shapiro N.Z., Shapley L.S.: Mass action laws and the gibbs free energy function. J. Soc. Indus. Appl. Math. 13(2), 353–375 (1965)

    Article  MathSciNet  Google Scholar 

  25. Landel R.F., Peng S.T.J.: Equations of state and constitutive equations. J. Rheol. 30(4), 741–765 (1986)

    Article  ADS  MATH  Google Scholar 

  26. Hassanizadeh S.M.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  ADS  Google Scholar 

  27. Stevens R.N., Guiu F.: Energy balance concepts in the physics of fracture. Proc. R. Soc. A Math. Phys. Eng. Sci. 435(1893), 169–184 (1991)

    Article  ADS  MATH  Google Scholar 

  28. Lustig, S.R., Shay, R.M. Jr., Caruthers, J. M.: Thermodynamic constitutive equations for materials with memory on a material time scale. J. Rheol. 40(1), 69–106 (1996)

  29. Maire J.F., Chaboche J.L.: A new formulation of continuum damage mechanics (CDM) for composite materials. Aerosp. Sci. Technol. 1(4), 247–257 (1997)

    Article  MATH  Google Scholar 

  30. Gray W.G., Hassanizadeh S.M.: Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points. Adv. Water Resour. 21(4), 261–281 (1998)

    Article  ADS  Google Scholar 

  31. O’Rielly O.M.: On constitutive relations for elastic rods. Int. J. Solids Struct. 35(11), 1009–1024 (1998)

    Article  Google Scholar 

  32. Fischer F.D., Oberaigner E.R., Tanaka K., Nishimura F.: Transformation induced plasticity revised an updated formulation. Int. J. Solids Struct. 35(18), 2209–2227 (1998)

    Article  MATH  Google Scholar 

  33. Houlsby G.T., Puzrin A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16(9), 1017–1047 (2000)

    Article  MATH  Google Scholar 

  34. Houlsby, G.T., Puzrin, A.M.: Rate-dependent plasticity models derived from potential functions. J. Rheol. 46(1), 113–126 (2002)

  35. Lubarda V.A.: On thermodynamic potentials in linear thermoelasticity. Int. J. Solids Struct. 41(26), 7377–7398 (2004)

    Article  MATH  Google Scholar 

  36. Zhao, J., Sheng, D., Collins, I.F.: Thermomechanical formulation of strain gradient plasticity for geomaterials. J. Mech. Mater. Struct. 1(5), 837–863 (2006)

  37. Rajagopal K.R., Srinivasa A.R.: A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2125), 39–58 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bridges, C.: Implicit rate-type models for elastic bodies: development, integration, linearization and application. PhD thesis, Texas A&M University (2011)

  39. Surana K.S., Mendoza Y., Reddy J.N.: Constitutive theories for thermoelastic solids in Lagrangian description using gibbs potential. Acta Mech. 224(5), 1619–6937 (2013)

    Article  MathSciNet  Google Scholar 

  40. Surana K.S., Nunez D., Reddy J.N., Romkes A.: Rate constitutive theory for ordered thermofluids. J. Contin. Mech. Thermodyn. 25(5), 626–662 (2013)

    ADS  MathSciNet  Google Scholar 

  41. Surana K.S., Nunez D., Reddy J.N., Romkes A.: Rate constitutive theory for ordered thermoelastic solids. Ann. Solid Struct. Mech. 3, 27–54 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Reddy, J.N. & Nunez, D. Ordered rate constitutive theories for thermoviscoelastic solids without memory in Lagrangian description using Gibbs potential. Continuum Mech. Thermodyn. 27, 409–431 (2015). https://doi.org/10.1007/s00161-014-0366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0366-5

Keywords

Navigation