Skip to main content
Log in

Ordered rate constitutive theories for thermoviscoelastic solids with memory in Lagrangian description using Gibbs potential

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper presents ordered rate constitutive theories of orders m and n, i.e., (m, n) for finite deformation of homogeneous, isotropic, compressible and incompressible thermoviscoelastic solids with memory in Lagrangian description using entropy inequality in Gibbs potential Ψ as an alternate approach of deriving constitutive theories using entropy inequality in terms of Helmholtz free energy density Φ. Second Piola-Kirchhoff stress σ [0] and Green’s strain tensor ε [0] are used as conjugate pair. We consider Ψ, heat vector q, entropy density η and rates of upto orders m and n of σ [0] and ε [0], i.e., σ [i]; i = 0, 1, . . . , m and ε [j]; j = 0, 1, . . . , n. We choose Ψ, ε [n], q and η as dependent variables in the constitutive theories with ε [j]; j = 0, 1, . . . , n − 1, σ [i]; i = 0, 1, . . . , m, temperature gradient g and temperature θ as their argument tensors. Rationale for this choice is explained in the paper. Entropy inequality, decomposition of σ [0] into equilibrium and deviatoric stresses, the conditions resulting from entropy inequality and the theory of generators and invariants are used in the derivations of ordered rate constitutive theories of orders m and n in stress and strain tensors. Constitutive theories for the heat vector q (of up to orders m and n − 1) that are consistent (in terms of the argument tensors) with the constitutive theories for ε [n] (of up to orders m and n) are also derived. Many simplified forms of the rate theories of orders (m, n) are presented. Material coefficients are derived by considering Taylor series expansions of the coefficients in the linear combinations representing ε [n] and q using the combined generators of the argument tensors about a known configuration \({{\underline{\varOmega}}}\) in the combined invariants of the argument tensors and temperature. It is shown that the rate constitutive theories of order one (m = 1, n = 1) when further simplified result in constitutive theories that resemble currently used theories but are in fact different. The solid continua characterized by these theories have mechanisms of elasticity, dissipation and memory, i.e., relaxation behavior or rheology. Fourier heat conduction law is shown to be an over simplified case of the rate theory of order one (m = 1, n = 1) for q. The paper establishes when there is equivalence between the constitutive theories derived here using Ψ and those presented in reference Surana et al. (Acta Mech. doi:10.1007/s00707-014-1173-6, 2014) that are derived using Helmholtz free energy density Φ. The fundamental differences between the two constitutive theories in terms of physics and their explicit forms using Φ and Ψ are difficult to distinguish from the ordered theories of orders (m, n) due to complexity of expressions. However, by choosing lower ordered theories, the difference between the two approaches can be clearly seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surana, K.S., Moody, T.C., Reddy, J.N.: Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids with memory. Acta Mech (2014). doi:10.1007/s00707-014-1173-6

  2. Prager W.: Strain hardening under combined stresses. J. Appl. Phys. 16, 837–840 (1945)

    Article  MathSciNet  ADS  Google Scholar 

  3. Reiner M.: A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Rivlin R.S., Ericksen J.L.: Stress–deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MATH  MathSciNet  Google Scholar 

  5. Rivlin R.S.: Further remarks on the stress–deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 681–702 (1955)

    MATH  MathSciNet  Google Scholar 

  6. Todd J.A.: Ternary quadratic types. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 399–456 (1948)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Wang C.C.: On representations for isotropic functions, part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  MATH  Google Scholar 

  8. Wang C.C.: On representations for isotropic functions, part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  9. Wang C.C.: A new representation theorem for isotropic functions, part I and part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  MATH  Google Scholar 

  10. Wang C.C.: Corrigendum to ‘Representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  11. Smith G.F.: On a fundamental error in two papers of C.C. Wang, ‘On representations for isotropic functions, part I and part II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  MATH  Google Scholar 

  12. Smith G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MATH  Google Scholar 

  13. Spencer A.J.M., Rivlin R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Spencer A.J.M., Rivlin R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  15. Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Chapter 3 ‘Treatise on Continuum Physics, I’. Academic Press, London (1971)

  16. Boehler J.P.: On irreducible representations for isotropic scalar functions. J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 57, 323–327 (1977)

    MATH  MathSciNet  Google Scholar 

  17. Zheng Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MATH  Google Scholar 

  18. Zheng Q.S.: On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

  19. Eringen A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  20. Eringen A.C.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  21. Gurtin M.: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. A Math. Phys. Eng. Sci. 440(1909), 323–343 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Schapery R.A.: Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media. J. Appl. Phys. 35(5), 1451–1465 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  23. Shapiro N.Z., Shapley L.S.: Mass action laws and the Gibbs free energy function. J. Soc. Ind. Appl. Math. 13(2), 353–375 (1965)

    Article  MathSciNet  Google Scholar 

  24. Landel R.F., Peng S.T.J.: Equations of state and constitutive equations. J. Rheol. 30(4), 741–765 (1986)

    Article  MATH  ADS  Google Scholar 

  25. Hassanizadeh S.M.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  ADS  Google Scholar 

  26. Stevens R.N., Guiu F.: Energy balance concepts in the physics of fracture. Proc. R. Soc. A Math. Phys. Eng. Sci. 435(1893), 169–184 (1991)

    Article  MATH  ADS  Google Scholar 

  27. Lustig, S.R., Shay Jr., R.M., Caruthers, J.M.: Thermodynamic constitutive equations for materials with memory on a material time scale. J. Rheol. 40(1), 69–106 (1996)

  28. Maire J.F., Chaboche J.L.: A new formulation of continuum damage mechanics (CDM) for composite materials. Aerosp. Sci. Technol. 1(4), 247–257 (1997)

    Article  MATH  Google Scholar 

  29. Gray W.G., Hassanizadeh S.M.: Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points. Adv. Water Resour. 21(4), 261–281 (1998)

    Article  ADS  Google Scholar 

  30. O’Rielly O.M.: On constitutive relations for elastic rods. Int. J. Solids Struct. 35(11), 1009–1024 (1998)

    Article  Google Scholar 

  31. Fischer F.D., Oberaigner E.R., Tanaka K., Nishimura F.: Transformation induced plasticity revised an updated formulation. Int. J. Solids Struct. 35(18), 2209–2227 (1998)

    Article  MATH  Google Scholar 

  32. Houlsby G.T., Puzrin A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16(9), 1017–1047 (2000)

    Article  MATH  Google Scholar 

  33. Houlsby, G.T., Puzrin, A.M.: Rate-dependent plasticity models derived from potential functions. J. Rheol. 46(1), 113–126 (2002)

  34. Lubarda V.A.: On thermodynamic potentials in linear thermoelasticity. Int. J. Solids Struct. 41(26), 7377–7398 (2004)

    Article  MATH  Google Scholar 

  35. Zhao, J., Sheng, D., Collins, I.F.: Thermomechanical formulation of strain gradient plasticity for geomaterials. J. Mech. Mater. Struct. 1(5), 837–863 (2006)

  36. Rajagopal K.R., Srinivasa A.R.: A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2125), 39–58 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. Bridges, C.: Implicit Rate-Type Models for Elastic Bodies: Development, Integration, Linearization & Application. PhD thesis, Texas A&M University (2011)

  38. Surana, K.S., Reddy, J.N., Nunez, D.: Ordered rate constitutive theories for thermoviscoelasticn solids without memory in Lagrangian description using Gibbs potential. J. Contin. Mech. Thermodyn (2014). doi:10.1007/s00161-014-0366-5

  39. Surana K.S., Mendoza Y., Reddy J.N.: Constitutive theories for thermoelastic solids in Lagrangian description using Gibbs potential. Acta Mech. 224(5), 1019–1044 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Surana K.S., Nunez D., Reddy J.N., Romkes A.: Rate constitutive theory for ordered thermoviscoelastic fluids—polymers. J. Contin. Mech. Thermodyn. 26, 143–181 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  41. Surana K.S., Nunez D., Reddy J.N.: Giesekus constitutive model for thermoviscoelastic fluids based on ordered rate constitutive theories. J. Res. Updates Polym. Sci. 2, 232–260 (2013)

    Google Scholar 

  42. Surana K.S., Nunez D., Reddy J.N., Romkes A.: Rate constitutive theory for ordered thermofluids. J. Contin. Mech. Thermodyn. 25(5), 626–662 (2013)

    MathSciNet  ADS  Google Scholar 

  43. Surana K.S., Nunez D., Reddy J.N., Romkes A.: Rate constitutive theory for ordered thermoelastic solids. Ann. Solid Struct. Mech. 3, 27–54 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Reddy, J.N. & Nunez, D. Ordered rate constitutive theories for thermoviscoelastic solids with memory in Lagrangian description using Gibbs potential. Continuum Mech. Thermodyn. 27, 1019–1038 (2015). https://doi.org/10.1007/s00161-014-0395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0395-0

Keywords

Navigation