Skip to main content
Log in

Dynamic topology optimization design of rotating beam cross-section with gyroscopic effects

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Gyroscopic effects are essential features for vibration analysis and design of rotating structures due to the variation of coordinate system and the presence of inertia force. The purpose of this study is to present a new topology optimization method for designing rotating beam cross-section with gyroscopic effects. Based on the Giavotto beam theory and Hamilton’s principle, the governing motion equations of a rotating beam with an arbitrary geometry section are derived first, and then the dynamic finite element models are formulated. The eigensolution of the rotating beam has complex eigenvalues due to the gyroscopic terms in the governing equations, and this work mainly concerns with the steady rotating state, in which the real parts of all complex eigenvalues equal to zero. Topology optimization models of the beam cross-section are formulated in the variable density frame and the objective is to maximize the fundamental eigenfrequency and the gap between two consecutive eigenfrequencies. In order to alleviate the non-differentiability of min-max problems, the Kreisselmeier-Steinhauser function is used to approximate the objective function. The sensitivities of eigenfrequencies with respect to design variables are derived in the complex space. Numerical examples show that the angular velocity has a significant influence on the optimal topology of the rotating beam cross-section, and also validate the effectiveness and necessity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55

    Article  Google Scholar 

  • Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94:3278–3289

    Article  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Keer L (1993) Transverse vibrations of a rotating twisted Timoshenko beam under axial loading. ASME Journal of Vibration and Acoustics 115:285–294

    Article  Google Scholar 

  • Chen TY, Wang BP (1993) Optimum design of rotor-bearing systems with eigenvalue constraints. ASME. J Eng Gas Turbines Power 115:256–260

    Article  Google Scholar 

  • Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Donoso A, Sigmund O (2004) Topology optimization of multiple physics problems modelled by Poissons equation. Latin American Journal of Solids and Structures 1:169–184

    Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Gans HD, Anderson WJ (1991) Structural optimization incorporating centrifugal and Coriolis effects. AIAA J 29:1743–1750

    Article  MATH  Google Scholar 

  • Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli G et al (1983) Anisotropic beam theory and applications. Comput Struct 16:403–413

    Article  MATH  Google Scholar 

  • Gunjal S, Dixit U (2007) Vibration analysis of shape-optimized rotating cantilever beams. Eng Optim 39:105–123

    Article  Google Scholar 

  • Gupta SD, Rajamohan V (2014) Segment optimization of a rotating multilayer sandwich beam. Journal of Sandwich Structures & Materials 16:148–172

    Article  Google Scholar 

  • Hoa S (1979) Vibration of a rotating beam with tip mass. J Sound Vib 67:369–381

    Article  MATH  Google Scholar 

  • Huang CL, Lin WY, Hsiao KM (2010) Free vibration analysis of rotating Euler beams at high angular velocity. Comput Struct 88:991–1001

    Article  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986

    Article  Google Scholar 

  • Kim YY, Kim TS (2000) Topology optimization of beam cross sections. Int J Solids Struct 37:477–493

    Article  MATH  Google Scholar 

  • Kim TS, Kim YY (2002) Multiobjective topology optimization of a beam under torsion and distortion. AIAA J 40:376–381

    Article  Google Scholar 

  • Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70:47–61

    Article  MathSciNet  MATH  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index, IFAC Symp. Computer Aided Design of Control Systems, Zurich, Switzerland

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620

    Article  Google Scholar 

  • Li L (2008) Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties: Georgia Institute of. Technology

  • Li L, Hu Y, Wang X (2012) A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues. Mech Syst Signal Process 30:61–77

    Article  Google Scholar 

  • Li Q, Chen W, Liu S, Tong L (2016) Structural topology optimization considering connectivity constraint. Struct Multidiscip Optim 54:971–984

    Article  MathSciNet  Google Scholar 

  • Li Y, Zhu JH, Zhang WH, Wang L (2018) Structural topology optimization for directional deformation behavior design with the orthotropic artificial weak element method. Struct Multidiscip Optim 57:1251–1266

  • Liu S, An X, Jia H (2008) Topology optimization of beam cross-section considering warping deformation. Struct Multidiscip Optim 35:403–411

    Article  Google Scholar 

  • Ma Z-D, Kikuchi N, Cheng H-C (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Multidiscip Optim 1:11–17

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11

    Article  Google Scholar 

  • Raspanti C, Bandoni J, Biegler L (2000) New strategies for flexibility analysis and design under uncertainty. Comput Chem Eng 24:2193–2209

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Structural optimization 8:207–227

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622

    Article  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Yi S, Cheng G, Xu L (2016) Stiffness design of heterogeneous periodic beam by topology optimization with integration of commercial software. Comput Struct 172:71–80

    Article  Google Scholar 

  • Yokoyama T (1988) Free vibration characteristics of rotating Timoshenko beams. Int J Mech Sci 30:743–755

    Article  MATH  Google Scholar 

  • Yoo H, Shin S (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212:807–828

    Article  Google Scholar 

  • Yoo HH, Cho JE, Chung J (2006) Modal analysis and shape optimization of rotating cantilever beams. J Sound Vib 290:223–241

    Article  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336

    Article  Google Scholar 

  • Zhu J-H, Li Y, Zhang W-H, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidiscip Optim 53:893–906

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support to this work by the National Natural Foundation of China (Grant Nos. 11332004, 11372073 and 11402046), the 111 Project (B14013) and the Fundamental Research Funds for the Central Universities of China (DUT15ZD101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Q., Liu, S. et al. Dynamic topology optimization design of rotating beam cross-section with gyroscopic effects. Struct Multidisc Optim 58, 1467–1487 (2018). https://doi.org/10.1007/s00158-018-1974-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1974-7

Keywords

Navigation