Skip to main content
Log in

Application of Microalgal Physiological Response as Biomarker for Evaluating the Toxicity of the Textile Dye Alizarin Red S

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Textile dyes are becoming a growing threat to the environment. This report presents the findings of the study on the toxicity of the textile dye Alizarin Red S on two freshwater microalgae. The acute toxicity assay revealed that 96-h EC50 values of Chlorella vulgaris and Spirulina platensis were 29.81 mg/L and 18.94 mg/L respectively. The pigments chlorophyll-a, b and carotenoids in C. vulgaris on 96-h exposure to the dye were 2.91, 3.29 and 3.01 times lower in analogy to control whereas Spirulina platensis showed 2.89and 2.56 fold decrease in chlorophyll-a and carotenoid content than control. After the test period of 96-h with dye, the protein content of C. vulgaris and S. platensis were 2.33 and 1.77 times lower compared to the control. The growth inhibition rate, pigment as well as the protein content declined in compliance with the rise in dye concentration, which anticipate paradigm about the toxic effects of the textile dye.

Highlights

  • Inhibition of growth rate and changes in the biochemical composition reveals the toxicity of the textile dye.

  • ARS can be considered as harmful to the aquatic organism according to the EU-Directive 93/67/EEC.

  • Dye toxicity to microalgae varies depending on the dose and exposure period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn C, Obendorf SK (2004) Dyes on archaeological textiles: Analyzing alizarin and its degradation products. Text Res J 74(11):949–954

    Article  CAS  Google Scholar 

  • Albadarin AB, Mangwandi C (2015) Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. J Environ Manage 1:164:86–93

    Article  Google Scholar 

  • Ali SK, Saleh AM (2012) Spirulina—an overview. Int J Pharm Sci 4(3):9–15

    CAS  Google Scholar 

  • Aquino JM, Rocha-Filho RC, Ruotolo LA, Bocchi N, Biaggio SR (2014) Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem Eng J 1:251:138–145

    Article  Google Scholar 

  • Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Reviews 19(NA):350–371

    Article  CAS  Google Scholar 

  • Bhatia SC, Devaraj S (2017) Pollution control in textile industry. WPI publishing

  • Burkiewicz K (1987) The influence of gibberellins and cytokinins on the growth of some unicellular Baltic algae Bot. 30:63–69

  • Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. Journal of Biological Chemistry 1;268(23):17348-53

  • Chia MA, Musa RI (2014) Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales). Anais da Academia Brasileira de Ciências 86:419–428

    Article  CAS  Google Scholar 

  • Daneshvar E, Vazirzadeh A, Niazi A, Kousha M, Naushad M, Bhatnagar A (2017) Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. J Clean Prod 20:152:443–453

    Article  Google Scholar 

  • Deng D, Guo J, Zeng G, Sun G (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. International Biodeterioration & Biodegradation 1;62(3):263-9

  • Desore A, Narula SA (2018) An overview on corporate response towards sustainability issues in textile industry. Environ Dev Sustain 1(4):1439–1459

    Article  Google Scholar 

  • Drumond Chequer FM, Augusto Rodrigues de Oliveira G, Anastácio Ferraz ER, Carvalho Cardoso J, Boldrin Zanoni MV, de Palma D (2013) Textile Dyes: Dyeing Process and Environmental Impact, Eco-Friendly Textile Dyeing and Finishing, Dr. Melih Gunay (Ed.), InTech, DOI: https://doi.org/10.5772/53659

  • Dwivedi S (2013) Effect of textile dyes on Spirulina platensis. J Chem Pharm Res 5:66–80

    CAS  Google Scholar 

  • El Boujaady H, Mourabet M, El Rhilassi A, Bennani-Ziatni M, El Hamri R, Taitai A (2016) Adsorption of a textile dye on synthesized calcium deficient hydroxyapatite (CDHAp): Kinetic and thermodynamic studies. J Mater Environ Sci 7(11):4049–4063

    Google Scholar 

  • Esperanza M, Seoane M, Servia MJ, Cid A (2020) Effects of bisphenol A on the microalga Chlamydomonas reinhardtii and the clam Corbicula fluminea. Ecotoxicol Environ Saf 197:110609

    Article  CAS  Google Scholar 

  • Ferraz ER, Grando MD, Oliveira DP (2011) The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. Journal of hazardous materials 30;192(2):628 – 33

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environment international 1;30(7):953 – 71

  • Franciscon E, Zille A, Fantinatti-Garboggini F, Silva IS, Cavaco-Paulo A, Durrant LR (2009) Microaerophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process biochemistry 1;44(4):446 – 52

  • Gita S, Shukla SP, Deshmukhe G, Choudhury TG, Saharan N, Singh AK (2021) Toxicity evaluation of six textile dyes on growth, metabolism and elemental composition (C, H, N, S) of microalgae Spirulina platensis: the environmental consequences. Bull Environ Contam Toxicol 106(2):302–309

    Article  CAS  Google Scholar 

  • Gita S, Shukla SP, Prakash C, Saharan N, Deshmukhe G (2018) Evaluation of Toxicity of a Textile Dye (Optilan Red) towards a Green Microalga Chlorella vulgaris. Int J Curr Microbiol App Sci 7(8):3346–3355

    Article  CAS  Google Scholar 

  • Gita S, Shukla SP, Saharan N, Prakash C, Deshmukhe G (2019) Toxic Effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater chlorophycean alga Chlorella vulgaris. Bull Environ Contam Toxicol 102(6):795–801

    Article  CAS  Google Scholar 

  • Guarantini CCI, Zanoni MVB (2000) Textyle dyes. Quim - Nova 23:71–78

    Article  Google Scholar 

  • Källqvist T, Nyholm N (2002) Freshwater alga and cyanobacteria: growth inhibition test: Draft revised guideline 201. In OECD Guidelines for testing of chemicals-Proposal for updating guideline 201

  • Guideline OECD 201 (2006) Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Organization for Economic Co-operation and Development, Paris, France

  • Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 1;209:201 – 19

  • Hernández-Zamora M, Martínez-Jerónimo F (2019) Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos. Ecotoxicology 28(8):890–902

    Article  Google Scholar 

  • Hernandez-Zamora M, Perales-Vela HV, Flores-Ortiz CM, CanizaresVillanueva RO (2014) Physiological and biochemical responses of Chlorella vulgaris to Congo Red. Ecotoxicol Environ Saf 108:72–77. https://doi.org/10.1016/j. ecoenv.2014.05.030

    Article  CAS  Google Scholar 

  • Hu TL, Wu SC (2001) Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium–Anabaena sp. Bioresource technology 1;77(1):93 – 5

  • Huang X, Bo X, Zhao Y, Gao B, Wang Y, Sun S, Yue Q, Li Q (2014) Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresource technology 1;165:116 – 21

  • Khatri J, Nidheesh PV, Singh TA, Kumar MS (2018) Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem Eng J 15:348:67–73

    Article  Google Scholar 

  • Kirk-Othmer (2004) 5th edition. Encyclopedia of Chemical Technology v. 7 WileyInterscience

  • Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 15(1–3):141–154

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Boil Chem 193:265–275

    Article  CAS  Google Scholar 

  • Mahalakshmi S, Lakshmi D, Menaga U (2015) Biodegradation of Different Concentration of dye (Congo red dye) by using Green and Blue GreenAlgae. Int J Environ Res 9(2):735–744

    CAS  Google Scholar 

  • Mahaptra NN (2016) Textile dyes. CRC press; new delhi,Woodhead publishing India, Boca Raton

    Book  Google Scholar 

  • Martínez-Ruiz EB, Martínez-Jeronimo F (2015) Nickel has biochemical, physiological, and structural effects on the Green microalga Ankistrodesmus falcatus: an integrative study. Aquat Toxicol 169:27–36

    Article  Google Scholar 

  • Moorthy AK, Rathi BG, Shukla SP, Kumar K, Bharti VS (2021) Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environmental Toxicology and Pharmacology, 82, p.103552

  • Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol 69(6):1376–1381

    Article  CAS  Google Scholar 

  • Muthu SS (2017) Introduction. In: Muthu SS (ed) sustainability in the textile industry. Springer, Heidelberg, pp 1–8

    Chapter  Google Scholar 

  • Newman MC (2015) Risk assessment of contaminants. Fundamentals of ecotoxicology, 4th edn. CRC Press, Boca Raton, pp.397–423

  • Øllgaard H, Frost L, Galster J, Hansen OC (1998) Survey of Azocolorants in Denmark: Consumption, Use, Health and Environmental Aspects. Danish Environmental Protection Agency, Denmark

    Google Scholar 

  • Qian HF, Chen W, Sheng GD, Xu XY, Liu WP, Fu ZW (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga. Chlorella vulgaris Aquat Toxicol 88:301

    Article  CAS  Google Scholar 

  • Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl Microbiol Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2016) Sensitivity and antioxidant response of Chlorella sp. MM3 to used engine oil and its water accommodated fraction. Bull Environ Contam Toxicol 97:71–77

    Article  CAS  Google Scholar 

  • Rioboo C, Prado R, Herrero C, Cid A (2007) Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquat Toxicol 83:247–253

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Roy R, Fakhruddin ANM, Khatun R, Islam MS, Ahsan MA, Neger AJMT (2010) Characterization of textile industrial effluents and its effects on aquatic macrophytes and algae. Bangl J Sci Ind Res 45(1):79–84. https://doi.org/10.3329/bjsir.v45i1.5187

    Article  CAS  Google Scholar 

  • Sandhya S (2010) Biodegradation of azo dyes under anaerobic condition: role of azoreductase. Biodegradation of azo dyes. Springer, Berlin, Heidelberg, pp 39–57

    Chapter  Google Scholar 

  • Setiadi T, Andriani Y, Erlania M (2006) Treatment of Textile Wastewater by a Combination of Anaerobic and Aerobic Processes: A Denim Processing Plant Case. Southeast Asian Water Environment

  • Shukla SP, Tiwari AK, Tiwari DN, Mishra BP, Gupta GS (1992) Assessment of the effect of the toxicity of a textile dye on Nostoc muscorum ISU, A Diazotrophic cyanobacterium. Environ Pollut 84:23–25

    Article  Google Scholar 

  • Stauber JL, Davies CM (2000) Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ Rev 8:255

    Article  CAS  Google Scholar 

  • Tomaselli L (2004) The microalgal cell. In: Richmond, A. (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology, pp. 146–167

  • Xiong JQ, Kurade MB, Abou-Shanab RA, Ji MK, Choi J, Kim JO, Jeon BH (2016) Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol 205:183–190

    Article  CAS  Google Scholar 

  • Zhang T, Shen Z, Xu P, Zhu J, Lu Q, Shen Y, Wang Y, Yao C, Li J, Wang Y, Jiang H (2012) Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis. J Appl Phycol 24(4):881–886

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to ICAR-CIFE, Mumbai for the financial support provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathi Bhuvaneswari Govindarajan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moorthy, A.K., Shukla, S.P., Govindarajan, R.B. et al. Application of Microalgal Physiological Response as Biomarker for Evaluating the Toxicity of the Textile Dye Alizarin Red S. Bull Environ Contam Toxicol 109, 401–408 (2022). https://doi.org/10.1007/s00128-022-03525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03525-3

Keywords

Navigation