Skip to main content

Advertisement

Log in

Designing future peanut: the power of genomics-assisted breeding

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands.

Abstract

Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. This is a review paper; all resources used are cited correctly.

References

  • Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X (2018) High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16:1954–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D, Yuan M, Wang X, Culbreath AK, Holbrook CC (2019) A recombination bin-map identified a major QTL for resistance to tomato spotted wilt virus in peanut (Arachis hypogaea). Sci Rep 9:18246

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Agmon S, Kunta S, Dafny Yelin M, Moy J, Ibdah M, Harel A, Rabinovitch O, Levy Y, Hovav R (2022) Mapping of stem rot resistance in peanut indicates significant effect for plant architecture locus. Crop Sci 62:2197–2211

    Article  CAS  Google Scholar 

  • Akbar A, Singh Manohar S, Tottekkaad Variath M, Kurapati S, Pasupuleti J (2017) Efficient partitioning of assimilates in stress-tolerant groundnut genotypes under high-temperature stress. Agronomy 7:30

    Article  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Able JA, Bassi FM, Christopher J, Hickey LT (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Methods 14:1–15

    Article  Google Scholar 

  • Anilkumar C, Sunitha N, Devate NB, Ramesh S (2022) Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review. Planta 256:87

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkley NA, Upadhyaya HD, Liao B, Holbrook CC (2016) Global resources of genetic diversity in peanut. Peanuts. Elsevier, pp 67–109

    Chapter  Google Scholar 

  • Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC (2023) Enhancing climate change resilience in agricultural crops. Curr Biol 33:R1246–R1261

    Article  CAS  PubMed  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Dash P, Maurya AK, Jasani MD, Chandrashekar AB, Manivannan N, Vasanthi R, Dobariya K (2018) Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica 214:1–15

    Article  CAS  Google Scholar 

  • Bera S, Rani K, Kamdar J, Pandey M, Desmae H, Holbrook C, Burow M, Manivannan N, Bhat RS, Jasani MD (2022) Genomic designing for biotic stress resistant peanut. In: Kole C (ed) Genomic Designing for Biotic Stress Resistant Oilseed Crops. Springer, Cham, pp 137–214. https://doi.org/10.1007/978-3-030-91035-8_4

    Chapter  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S (2016a) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Leal-Bertioli SC, Stalker HT (2016b) The peanut genome: the history of the consortium and the structure of the genome of cultivated peanut and its diploid ancestors. Peanuts. Elsevier, pp 147–161

    Chapter  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S, Ren L, Farmer AD, Pandey MK et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884

    Article  CAS  PubMed  Google Scholar 

  • Bhat RS, Rockey J, Shirasawa K, Tilak I, Brijesh Patil M, Reddy Lachagari V (2020) DNA methylation and expression analyses reveal epialleles for the foliar disease resistance genes in peanut (Arachis hypogaea L.). BMC Res Notes 13:1–7

    Article  Google Scholar 

  • Bhat JA, Yu D, Bohra A, Ganie SA, Varshney RK (2021a) Features and applications of haplotypes in crop breeding. Commun Biol 4:1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RS, Shirasawa K, Sharma V, Isobe SN, Hirakawa H, Kuwata C, Pandey MK, Varshney RK, Gowda MC (2021b) Population genomics of peanut. Population genomics. Springer, Cham

    Google Scholar 

  • Bhat RS, Shirasawa K, Chavadi SD (2022) Genome-wide structural and functional features of single nucleotide polymorphisms revealed from the whole genome resequencing of 179 accessions of Arachis. Physiol Plant 174:e13623

    Article  CAS  PubMed  Google Scholar 

  • Bhat RS, Shirasawa K, Gangurde S, Rashmi M, Sahana K, Pandey M (2023) Genome-wide landscapes of genes and repeatome reveal the genomic differences between the two subspecies of peanut (Arachis hypogaea). Crop Des 2:100029

    Google Scholar 

  • Bohra A, Kilian B, Sivasankar S, Caccamo M, Mba C, McCouch SR, Varshney RK (2022a) Reap the crop wild relatives for breeding future crops. Trends Biotechnol 40:412–431

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Tiwari A, Kaur P, Ganie SA, Raza A, Roorkiwal M, Mir RR, Fernie AR, Smýkal P, Varshney RK (2022b) The key to the future lies in the past: insights from grain legume domestication and improvement should inform future breeding strategies. Plant Cell Physiol 263:1554–1572

    Article  Google Scholar 

  • Bomireddy D, Gangurde SS, Variath MT, Janila P, Manohar SS, Sharma V, Parmar S, Deshmukh D, Reddisekhar M, Reddy DM (2022) Discovery of major quantitative trait loci and candidate genes for fresh seed dormancy in groundnut. Agronomy 12:404

    Article  CAS  Google Scholar 

  • Breider IS, Gaynor RC, Gorjanc G, Thorn S, Pandey MK, Varshney RK, Hickey JM (2022) A multi-part strategy for introgression of exotic germplasm into elite plant breeding programs using genomic selection. Preprint https://doi.org/10.21203/rs.3.rs-1246254/v1

  • Cai T, Sharif Y, Zhuang Y, Yang Q, Chen X, Chen K, Chen Y, Gao M, Dang H, Pan Y (2023) In-silico identification and characterization of O-methyltransferase gene family in peanut (Arachis hypogaea L.) reveals their putative roles in development and stress tolerance. Front Plant Sci 14:1145624

    Article  PubMed  PubMed Central  Google Scholar 

  • Cazzola F, Bermejo CJ, Guindon MF, Cointry E (2020) Speed breeding in pea (Pisum sativum L.), an efficient and simple system to accelerate breeding programs. Euphytica 216:178

    Article  CAS  Google Scholar 

  • Chaudhari S, Khare D, Patil SC, Sundravadana S, Variath MT, Sudini HK, Manohar SS, Bhat RS, Pasupuleti J (2019) Genotype× environment studies on resistance to late leaf spot and rust in genomic selection training population of peanut (Arachis hypogaea L.). Front Plant Sci 10:1338

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, Jackson SA (2020) Pod and seed trait QTL identification to assist breeding for peanut market preferences. G3: genes. Genom Genet 10:2297–2315

    CAS  Google Scholar 

  • Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, Ren X, Zhou X, Chen Y, Jiang H (2016a) Quantitative trait locus analysis for pod-and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet 17:1–9

    Article  CAS  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y (2016b) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113:6785–6790

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chen Y, Ren X, Zheng Y, Zhou X, Huang L, Yan L, Jiao Y, Chen W, Huang S, Wan L (2017) Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Breed 37:17

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S (2019a) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12:920–934

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang Z, Ren X, Huang L, Guo J, Zhao J, Zhou X, Yan L, Luo H, Liu N (2019b) Identification of major QTL for seed number per pod on chromosome A05 of tetraploid peanut (Arachis hypogaea L.). Crop J 7:238–248

    Article  Google Scholar 

  • Chiurugwi T, Kemp S, Powell W, Hickey LT (2019) Speed breeding orphan crops. Theor Appl Genet 132:607–616

    Article  PubMed  Google Scholar 

  • Choudhary D, Agarwal G, Wang H, Pandey MK, Culbreath AK, Varshney RK, Guo B (2019) Molecular markers and genomic resources for disease resistance in peanut-a review. Legume Res Int J 42:137–144

    Google Scholar 

  • Christopher J, Richard C, Chenu K, Christopher M, Borrell A, Hickey L (2015) Integrating rapid phenotyping and speed breeding to improve stay-green and root adaptation of wheat in changing, water-limited, Australian environments. Proc Environ Sci 29:175–176

    Article  Google Scholar 

  • Chu Y, Holbrook C, Isleib T, Burow M, Culbreath A, Tillman B, Chen J, Clevenger J, Ozias-Akins P (2018) Phenotyping and genotyping parents of sixteen recombinant inbred peanut populations. Peanut Sci 45:1–11

    Article  Google Scholar 

  • Chu Y, Chee P, Isleib TG, Holbrook CC, Ozias-Akins P (2020) Major seed size QTL on chromosome A05 of peanut (Arachis hypogaea) is conserved in the US mini core germplasm collection. Mol Breed 40:1–16

    Article  Google Scholar 

  • Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SC, Pandey MK, Vaughn J, Abernathy B, Barkley NA (2017) Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant 10:309–322

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los CG, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Cui R, Clevenger J, Chu Y, Brenneman T, Isleib TG, Holbrook CC, Ozias-Akins P (2020) Quantitative trait loci sequencing–derived molecular markers for selection of stem rot resistance in peanut. Crop Sci 60:2008–2018

    Article  CAS  Google Scholar 

  • de Blas FJ, Bruno CI, Arias RS, Ballén-Taborda C, Mamani E, Oddino C, Rosso M, Costero BP, Bressano M, Soave JH (2021) Genetic mapping and QTL analysis for peanut smut resistance. BMC Plant Biol 21:1–15

    Google Scholar 

  • Denwar NN, Simpson CE, Starr JL, Wheeler TA, Burow MD (2021) Evaluation and selection of interspecific lines of groundnut (Arachis hypogaea L.) for resistance to leaf spot disease and for yield improvement. Plants 10:873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh DB, Marathi B, Sudini HK, Variath MT, Chaudhari S, Manohar SS, Rani CVD, Pandey MK, Pasupuleti J (2020) Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Front Genet 11:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Qiu X, Luo H, Huang L, Guo J, Yu B, Sudini H, Pandey M, Kang Y, Liu N (2022) Comprehensive evaluation of Chinese peanut mini-mini core collection and QTL mapping for aflatoxin resistance. BMC Plant Biol 22:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodia SM, Joshi B, Gangurde SS, Thirumalaisamy PP, Mishra GP, Narandrakumar D, Soni P, Rathnakumar AL, Dobaria JR, Sangh C (2019) Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet 132:1001–1016

    Article  PubMed  Google Scholar 

  • Dura S, Lujan P, Puppala N, Sanogo S, Steiner R (2020) Screening US peanut mini-core accessions for resistance to Sclerotinia blight caused by Sclerotinia sclerotiorum. Can J Plant Sci 101:53–60

    Article  Google Scholar 

  • Fang Y, Zhang X, Liu H, Wu J, Qi F, Sun Z, Zheng Z, Dong W, Huang B (2023) Identification of quantitative trait loci and development of diagnostic markers for growth habit traits in peanut (Arachis hypogaea L.). Theor Appl Genet 136:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faye I, Pandey MK, Hamidou F, Rathore A, Ndoye O, Vadez V, Varshney RK (2015) Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica 206:631–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Fikre A, Degefu T, Geleta T, Thudi M, Gaur P, Ojiewo C, Hickey L, Varshney RK (2021) Rapid generation advance in chickpea for accelerated breeding gain in Ethiopia: what speed breeding imply? Ethiop J Agric Sci 31:1–10

    Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann JC, Courtois B (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:1–16

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gangurde SS, Kumar R, Pandey AK, Burow M, Laza HE, Nayak SN, Guo B, Liao B, Bhat RS, Madhuri N (2019) Climate-smart groundnuts for achieving high productivity and improved quality: current status, challenges, and opportunities. In: Kole C (ed) Genomic designing of climate-smart oilseed crops. Springer, Cham, pp 133–172

    Chapter  Google Scholar 

  • Gangurde SS, Wang H, Yaduru S, Pandey MK, Fountain JC, Chu Y, Isleib T, Holbrook CC, Xavier A, Culbreath AK (2020) Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J 18:1457–1471

    Article  CAS  PubMed  Google Scholar 

  • Gangurde SS, Khan AW, Janila P, Variath MT, Manohar SS, Singam P, Chitikineni A, Varshney RK, Pandey MK (2022) Whole-genome sequencing based discovery of candidate genes and diagnostic markers for seed weight in groundnut. Plant Genom 16:e20265

    Article  Google Scholar 

  • Gangurde SS, Pasupuleti J, Parmar S, Variath MT, Bomireddy D, Manohar SS, Varshney RK, Singam P, Guo B, Pandey MK (2023) Genetic mapping identifies genomic regions and candidate genes for seed weight and shelling percentage in groundnut. Front Genet 14:1128182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Sun J, Wang C, Dong Y, Xiao S, Wang X, Jiao Z (2017) Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS ONE 12:e0181843

    Article  PubMed  PubMed Central  Google Scholar 

  • Gayathri M, Shirasawa K, Varshney R, Pandey M, Bhat RS (2018) Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes 11:1–6

    Article  Google Scholar 

  • Ghosh S, Mahadevaiah SS, Gowda SA, Gangurde SS, Jadhav MP, Hake AA, Latha P, Anitha T, Chimmad V, Mirajkar KK (2022) Genetic mapping of drought tolerance traits phenotyped under varying drought stress environments in peanut (Arachis hypogaea L.). Euphytica 218:168

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  ADS  Google Scholar 

  • Großkinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66:5429–5440

    Article  PubMed  Google Scholar 

  • Hake A, Bhat RS (2017) Utility of AhTE markers for genetic and genomic studies in groundnut (Arachis hypogaea L.). Int J Curr Microbiol Appl Sci 6:2051–2060

    Article  Google Scholar 

  • Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil P, Nadaf H, Gowda M (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE 12:e0186113

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall RD, D’Auria JC, Ferreira ACS, Gibon Y, Kruszka D, Mishra P, Van de Zedde R (2022) High-throughput plant phenotyping: a role for metabolomics? Trends Plant Sci 27:549–563

    Article  CAS  PubMed  Google Scholar 

  • Hamidou F, Ratnakumar P, Halilou O, Mponda O, Kapewa T, Monyo E, Faye I, Ntare B, Nigam S, Upadhyaya H (2012) Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crop Res 126:189–199

    Article  Google Scholar 

  • Han S, Yuan M, Clevenger JP, Li C, Hagan A, Zhang X, Chen C, He G (2018) A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut (Arachis hypogaea L.). Front Plant Sci 9:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213:1–14

    Article  Google Scholar 

  • Holbrook CC, Dong W (2005) Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci 45:1540–1544

    Article  Google Scholar 

  • Holbrook C, Isleib T, Ozias-Akins P, Chu Y, Knapp S, Tillman B, Guo B, Gill R, Burow M (2013) Development and phenotyping of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci 40:89–94

    Article  Google Scholar 

  • Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SA, Stevens JR, Santos EM (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21:389–409

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Zhang S, Miao H, Cui F, Shen Y, Yang W, Xu T, Chen N, Chi X, Zhang Z (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:5479

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128:1103–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang R, Xiao D, Wang X, Zhan J, Wang A, He L (2022) Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biol 22:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Li H, Gao C, Yu W, Zhang S (2023) Advances in omics research on peanut response to biotic stresses. Front Plant Sci 14:1101994

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui-Fang J, Xiao-Ping R, Bo-Shou L, Jia-Quan H, Yong L, Ben-Yin C, Guo B, Holbrook C, Upadhyaya H (2008) Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin 34:25–30

    Google Scholar 

  • Jadhav MP, Gangurde SS, Hake AA, Yadawad A, Mahadevaiah SS, Pattanashetti SK, Gowda M, Shirasawa K, Varshney RK, Pandey MK (2021) Genotyping-by-sequencing based genetic mapping identified major and consistent genomic regions for productivity and quality traits in peanut. Front Plant Sci 12:668020

    Article  PubMed  PubMed Central  Google Scholar 

  • Janila P, Nigam S, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP (2016a) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  CAS  PubMed  Google Scholar 

  • Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, Manohar SS, Rathnakumar A, Radhakrishnan T, Liao B (2016b) Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci 7:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasani MD, Kamdar JH, Bera S, Sunkad G, Bera SK (2021) Novel and stable major QTLs conferring resistance to peanut bud necrosis disease and identification of resistant high yielding peanut breeding lines. Euphytica 217:1–13

    Article  Google Scholar 

  • Jiang H, Ren X, Chen Y, Huang L, Zhou X, Huang J, Froenicke L, Yu J, Guo B, Liao B (2013) Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet Resour 11:77–83

    Article  Google Scholar 

  • Jiang H, Huang L, Ren X, Chen Y, Zhou X, Xia Y, Huang J, Lei Y, Yan L, Wan L (2014) Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol 56:159–169

    Article  PubMed  Google Scholar 

  • Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, Zhou X, Liu N, Chen W, Guo J (2021) High-density genetic linkage map construction using whole-genome resequencing for mapping Qtls of resistance to Aspergillus flavus infection in peanut. Front Plant Sci 12:745408

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin G, Liu N, Yu B, Jiang Y, Luo H, Huang L, Zhou X, Yan L, Kang Y, Huai D (2023) Identification and pyramiding major QTL loci for simultaneously enhancing Aflatoxin resistance and yield components in peanut. Genes 14:625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonnala RS, Dunford NT, Chenault K (2005) Nutritional composition of genetically modified peanut varieties. J Food Sci 70:S254–S256

    Article  CAS  Google Scholar 

  • Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK (2020a) Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci 25:148–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, Xie D, Guo B (2020b) High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Theor Appl Genet 133:2239–2257

    Article  CAS  PubMed  Google Scholar 

  • Khedikar Y, Pandey MK, Sujay V, Singh S, Nayak SN, Klein-Gebbinck HW, Sarvamangala C, Mukri G, Garg V, Upadhyaya HD (2018) Identification of main effect and epistatic quantitative trait loci for morphological and yield-related traits in peanut (Arachis hypogaea L.). Mol Breed 38:1–12

    Google Scholar 

  • Kim K-S, Lee D, Bae SB, Kim Y-C, Choi I-S, Kim ST, Lee T-H, Jun T-H (2017) Development of SNP-based molecular markers by re-sequencing strategy in peanut. Plant Breed Biotechnol 5:325–333

    Article  Google Scholar 

  • Kolekar RM, Sukruth M, Shirasawa K, Nadaf HL, Motagi BN, Lingaraju S, Patil PV, Bhat RS (2017) Marker-assisted backcrossing to develop foliar disease-resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136:948–953

    Article  CAS  Google Scholar 

  • Kumari V, Gowda M, Tasiwal V, Pandey MK, Bhat RS, Mallikarjuna N, Upadhyaya HD, Varshney RK (2014) Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J 2:110–119

    Article  Google Scholar 

  • Kumari V, Gowda M, Yeri S (2020) Utilization of advanced backcross population derived from synthetic amphidiploid for dissecting resistance to late leaf spot in peanut (Arachis hypogaea L.). Trop Plant Biol 13:50–61

    Article  CAS  Google Scholar 

  • Kunta S, Agmon S, Chedvat I, Levy Y, Chu Y, Ozias-Akins P, Hovav R (2021) Identification of consistent QTL for time to maturation in Virginia-type Peanut (Arachis hypogaea L.). BMC Plant Biol 21:1–14

    Article  Google Scholar 

  • Kunta S, Parimi P, Levy Y, Kottakota C, Chedvat I, Chu Y, Ozias-Akins P, Hovav R (2022) A first insight into the genetics of maturity trait in runner× Virginia types peanut background. Sci Rep 12:15267

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li Y, Li L, Zhang X, Zhang K, Ma D, Liu J, Wang X, Liu F, Wan Y (2017) QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica 213:1–14

    Article  ADS  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen CY (2019) Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci 10:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Cui S, Dang P, Yang X, Wei X, Chen K, Liu L, Chen CY (2022) GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genom 23:403

    Article  CAS  Google Scholar 

  • Li W, Huang L, Liu N, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W (2023) Identification of a stable major sucrose-related QTL and diagnostic marker for flavor improvement in peanut. Theor Appl Genet 136:78

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Yang X-l, Cui S-l, Wang J-h, Hou M-y, Mu G-j, Li Z-c, Liu L-f (2020) Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (Arachis hypogaea L.). J Integr Agric 19:2383–2393

    Article  Google Scholar 

  • Liao B (2017) Germplasm characterization and trait discovery in peanut. In: Varshney RK, Pandey MK, Puppala N (eds) The peanut genome. Springer, Cham, pp 53–68. https://doi.org/10.1007/978-3-319-63935-2_5

    Chapter  Google Scholar 

  • Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X (2019) Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Mol Breed 39:1–14

    Article  Google Scholar 

  • Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S (2020a) QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biol 20:1–11

    Google Scholar 

  • Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y (2020b) High-resolution mapping of a major and consensus quantitative trait locus for oil content to a~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet 133:37–49

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shao L, Zhou J, Li R, Pandey MK, Han Y, Cui F, Zhang J, Guo F, Chen J (2022a) Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. J Adv Res 42:237–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Xiao L, Chi J, Li R, Han Y, Cui F, Peng Z, Wan S, Li G (2022b) Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance. BMC Plant Biol 22:1–13

    CAS  Google Scholar 

  • Liu T, Zhang X, Li K, Yao Q, Zhong D, Deng Q, Lu Y (2023) Large-scale genome editing in plants: approaches, applications, and future perspectives. Curr Opin Biotechnol 79:102875

    Article  CAS  PubMed  Google Scholar 

  • Lokya V, Parmar S, Pandey AK, Sudini HK, Huai D, Ozias-Akins P, Foyer CH, Nwosu CV, Karpinska B, Baker A et al (2023) Prospects for developing allergen-depleted food crops. Plant Genome 16:e20375

    Article  PubMed  Google Scholar 

  • Lu Q, Hong Y, Li S, Liu H, Li H, Zhang J, Lan H, Liu H, Li X, Wen S (2019) Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genom 20:1–9

    Article  Google Scholar 

  • Lu Q, Liu H, Hong Y, Liang X, Li S, Liu H, Li H, Wang R, Deng Q, Jiang H (2022) Genome-wide identification and expression of FAR1 gene family provide insight into pod development in peanut (Arachis hypogaea). Front Plant Sci 13:893278

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W (2019a) Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnol J 17:1248–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Pandey MK, Khan AW, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L (2019b) Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnol J 17:2356–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Pandey MK, Zhi Y, Zhang H, Xu S, Guo J, Wu B, Chen H, Ren X, Zhou X (2020a) Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. Theor Appl Genet 133:1133–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Cui R, Chavarro C, Tseng Y-C, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B (2020b) Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Theor Appl Genet 133:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhao Y, Chen H, Fu C, Zhu L, Zhou X, Xia H, Hou L, Li G, Zhuang W (2020) Genome-wide development of polymorphic microsatellite markers and their application in peanut breeding program. Electron J Biotechnol 44:25–32

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Jadhav DR, Reddy K, Husain F, Das K (2012) Screening new Arachis amphidiploids, and autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol 132:17–21

    Article  Google Scholar 

  • McCarty NS, Graham AE, Studená L, Ledesma-Amaro R (2020) Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 11:1–13

    Article  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7

    Article  Google Scholar 

  • Moradpour M, Abdulah SNA (2020) CRISPR/dC as9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol J 18:32–44

    Article  PubMed  Google Scholar 

  • Mora-Escobedo R, Hernández-Luna P, Joaquín-Torres IC, Ortiz-Moreno A, Robles-Ramirez MDC (2015) Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CyTA-J Food 13:300–304

    Article  CAS  Google Scholar 

  • Mou Y, Sun Q, Yuan C, Zhao X, Wang J, Yan C, Li C, Shan S (2022) Identification of the LOX gene family in peanut and functional characterization of AhLOX29 in drought tolerance. Front Plant Sci 13:832785

    Article  PubMed  PubMed Central  Google Scholar 

  • Neelakandan AK, Wright DA, Traore SM, Chen X, Spalding MH, He G (2022a) CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory Motifs in peanut (Arachis hypogaea L.). Front Genet 13:849961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neelakandan AK, Wright DA, Traore SM, Ma X, Subedi B, Veeramasu S, Spalding MH, He G (2022b) Application of CRISPR/Cas9 system for efficient gene editing in peanut. Plants 11:1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor D, Wright G, Dieters M, George D, Hunter M, Tatnell J, Fleischfresser D (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40:107–114

    Article  Google Scholar 

  • Ozias-Akins P, Cannon EK, Cannon SB (2017) Genomics resources for peanut improvement. In: Varshney R, Pandey M, Puppala N (eds) The peanut genome. Compendium of plant genomes. Springer, Cham, pp 69–91

    Chapter  Google Scholar 

  • Pan J, Zhou X, Ahmad N, Zhang K, Tang R, Zhao H, Jiang J, Tian M, Li C, Li A (2022) BSA-seq and genetic mapping identified candidate genes for branching habit in peanut. Theor Appl Genet 135:4457–4468

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee M, Sriswathi M, Govil M, Kumar A, Gowda M, Sharma S (2014c) Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE 9:e105228

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD (2017b) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:1–10

    Article  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P (2017c) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey AK, Sudini HK, Upadhyaya HD, Varshney RK, Pandey MK (2019) Hypoallergen peanut lines identified through large-scale phenotyping of global diversity panel: providing hope toward addressing one of the major global food safety concerns. Front Genet 10:1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Chaudhari S, Jarquin D, Janila P, Crossa J, Patil SC, Sundravadana S, Khare D, Bhat RS, Radhakrishnan T (2020a) Genome-based trait prediction in multi-environment breeding trials in groundnut. Theor Appl Genet 133:3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Pandey AK, Kumar R, Nwosu CV, Guo B, Wright GC, Bhat RS, Chen X, Bera SK, Yuan M (2020b) Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet 133:1679–1702

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Gangurde SS, Sharma V, Pattanashetti SK, Naidu GK, Faye I, Hamidou F, Desmae H, Kane NA, Yuan M (2021) Improved genetic map identified major QTLs for drought tolerance-and iron deficiency tolerance-related traits in groundnut. Genes 12:37

    Article  CAS  Google Scholar 

  • Pandey S, Singh A, Parida SK, Prasad M (2022) Combining speed breeding with traditional and genomics-assisted breeding for crop improvement. Plant Breed 141:301–313

    Article  CAS  Google Scholar 

  • Pandey MK, Rathore A, Das R, Khera P, Upadhyaya H, Jannink J, Hickey J, Varshney R (2014a) Selection of appropriate genomic selection model in an unstructured germplasm set of peanut (Arachis hypogaea L.). In: 6th international food legume research conference/7th international conference on legume genetics and genomics (TCU Place Saskatoon, Saskatchewan, Canada

  • Pandey MK, Guo B, Holbrook CC, Janila P, Zhang X, Bertioli DJ, Isobe S, Liang X, Varshney RK (2014b) Molecular markers, genetic maps and QTLs for molecular breeding in peanut. In: Mallikarjuna N, Varshney RK (eds) Genetics, genomics and breeding of peanuts. CRC Press, London, New York, pp 79–113

  • Pandey MK, Agarwal G, Rathore A, Janila P, Upadhyaya H, Varshney R (2015) Development of high density 60K “Axiom_Arachis” SNP Chip and optimization of genomic selection model for enhancing breeding efficiency in peanut. In: Proceedings of 8th international conference of the peanut research community on advances in arachis through genomics and biotechnology, Brisbane, Australia

  • Pandey MK, Bhat R, Janila P, Guo B, Varshney R (2017a) Genetic dissection of foliar disease resistance using next-generation sequencing approaches in groundnut. In: Proceedings of 9th international conference advances in arachis through genomics & biotechnology (AAGB), pp 14–17

  • Parmar S, Janila P, Gangurde SS, Variath MT, Sharma V, Bomireddy D, Manohar SS, Varshney RK, Singam P, Pandey MK (2023) Genetic mapping identified major main-effect and three co-localized quantitative trait loci controlling high iron and zinc content in groundnut. Plant Genome 16:e20361

    Article  CAS  PubMed  Google Scholar 

  • Patel JD, Wang ML, Dang P, Butts C, Lamb M, Chen CY (2022) Insights into the genomic architecture of seed and pod quality traits in the US peanut mini-core diversity panel. Plants 11:837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanashetti SK, Pandey MK, Naidu GK, Vishwakarma MK, Singh OK, Shasidhar Y, Boodi IH, Biradar BD, Das RR, Rathore A (2020) Identification of quantitative trait loci associated with iron deficiency chlorosis resistance in groundnut (Arachis hypogaea). Plant Breed 139:790–803

    Article  CAS  Google Scholar 

  • Peng Z, Gallo M, Tillman BL, Rowland D, Wang J (2016) Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol Genet Genom 291:363–381

    Article  CAS  Google Scholar 

  • Qi F, Sun Z, Liu H, Zheng Z, Qin L, Shi L, Chen Q, Liu H, Lin X, Miao L (2022) QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt. Theor Appl Genet 135:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravelombola W, Cason J, Tallury S, Manley A, Pham H (2022) Genome-wide association study and genomic selection for sting nematode resistance in peanut using the USDA public data. J Crop Improv 37:273–290

    Article  Google Scholar 

  • Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41:1209–1232

    Article  PubMed  Google Scholar 

  • Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W (2022a) Melatonin-mediated temperature stress tolerance in plants. GM Crops Food 13:196–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza A, Sharif Y, Chen K, Wang L, Fu H, Zhuang Y, Chitikineni A, Chen H, Zhang C, Varshney RK (2022b) Genome-wide characterization of Ascorbate peroxidase gene family in peanut (Arachis hypogea L.) revealed their crucial role in growth and multiple stress tolerance. Front Plant Sci 13:962182

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza A, Bohra A, Garg V, Varshney RK (2023b) Back to wild relatives for future breeding through super-pangenome. Mol Plant 16:1363–1365

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Bohra A, Varshney RK (2023c) Pan-genome for pearl millet that beats the heat. Trends Plant Sci 28:857–860

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Charagh S, Salehi H, Abbas S, Saeed F, Poinern GE, Siddique KH, Varshney RK (2023d) Nano-enabled stress-smart agriculture: can nanotechnology deliver drought and salinity-smart crops? J Sustain Agric Environ 2:189–214

    Article  Google Scholar 

  • Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KH, Zhuang W, Varshney RK (2023e) Developing drought-smart, ready-to-grow future crops. Plant Genome 16:e20279

    Article  PubMed  Google Scholar 

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK (2023f) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 43:1035–1062

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Bhardwaj S, Rahman MA, García-Caparrós P, Habib M, Saeed F, Charagh S, Foyer CH, Siddique KH, Varshney RK (2023a) Trehalose: a sugar molecule involved in temperature stress management in plants. The Crop J (Early view). https://doi.org/10.1016/j.cj.2023.09.010

    Article  Google Scholar 

  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109:373–389

    Article  CAS  PubMed  Google Scholar 

  • Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, Reyes VP, Tiwari A, Maurya AK, Croser JS (2022) Breeding more crops in less time: a perspective on speed breeding. Biology 11:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoluk SS, Vaio M, Ortíz AM, Chalup LM, Robledo G, Bertioli DJ, Seijo G (2022) Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species. Planta 256:50

    Article  CAS  PubMed  Google Scholar 

  • Saxena K, Saxena R, Hickey L, Varshney R (2019) Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica 215:1–7

    Article  Google Scholar 

  • Shaibu A, Miko Z, Ajeigbe H, Mohammed S (2020a) Genetic diversity and stability of groundnut mini-core collections for early and late leaf spot resistance in Nigeria. Afr Crop Sci J 28:23–32

    Google Scholar 

  • Shaibu AS, Sneller C, Motagi BN, Chepkoech J, Chepngetich M, Miko ZL, Isa AM, Ajeigbe HA, Mohammed SG (2020b) Genome-wide detection of SNP markers associated with four physiological traits in groundnut (Arachis hypogaea L.) mini core collection. Agronomy 10:192

    Article  CAS  Google Scholar 

  • Sharif Y, Mamadou G, Yang Q, Cai T, Zhuang Y, Chen K, Deng Y, Khan SA, Ali N, Zhang C (2023) Genome-Wide investigation of Apyrase (APY) genes in peanut (Arachis hypogaea L.) and functional characterization of a pod-abundant expression promoter AhAPY2-1p. Int J Mol Sci 24:4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kumar A, Dhakte P, Raturi G, Vishwakarma G, Barbadikar KM, Das B, Shivaraj S, Sonah H, Deshmukh R (2023a) Speed breeding opportunities and challenges for crop improvement. J Plant Growth Regul 42:46–59

    Article  CAS  Google Scholar 

  • Sharma V, Gangurde SS, Nayak SN, Gowda AS, Sukanth B, Mahadevaiah SS, Manohar SS, Choudhary RS, Anitha T, Malavalli SS (2023b) Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. Front Plant Sci 14:1182867

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT (2022) Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. J Exp Bot 73:3085–3108

    Article  CAS  PubMed  Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Nigam SN, Guo B, Varshney RK (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    Article  PubMed  PubMed Central  Google Scholar 

  • Shilpa K, Sunkad G, Srinivasu K, Marri S, Padmashree K, Jadhav DR, Sahrawat KL, Mallikarjuna N (2013) Biochemical composition and disease resistance in newly synthesized amphidiploid and autotetraploid peanuts. Food Nutr Sci 4:169–176

    CAS  Google Scholar 

  • Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012a) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C (2012b) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:1–13

    Article  Google Scholar 

  • Shirasawa K, Bhat RS, Khedikar YP, Sujay V, Kolekar RM, Yeri SB, Sukruth M, Cholin S, Asha B, Pandey MK (2018) Sequencing analysis of genetic loci for resistance for late leaf spot and rust in peanut (Arachis hypogaea L.). Front Plant Sci 9:1727

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu H, Luo Z, Peng Z, Wang J (2020) The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol 20:1–15

    Article  Google Scholar 

  • Song H, Wang P, Lin J-Y, Zhao C, Bi Y, Wang X (2016) Genome-wide identification and characterization of WRKY gene family in peanut. Front Plant Sci 7:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W (2022) QTL mapping of quality traits in peanut using whole-genome resequencing. Crop J 10:177–184

    Article  ADS  Google Scholar 

  • Sun H, Ren L, Qi F, Wang H, Yu S, Sun Z, Huang B, Han S, Shi P, Wang Y (2023) BSA-seq approach identified candidate region and diagnostic marker for chilling tolerance of high oleic acid peanut at germination stage. Agronomy 13:18

    Article  CAS  Google Scholar 

  • Tang Y, Du G, Xiang J, Hu C, Li X, Wang W, Zhu H, Qiao L, Zhao C, Wang J (2022a) Genome-wide identification of auxin response factor (ARF) gene family and the miR160-ARF18-mediated response to salt stress in peanut (Arachis hypogaea L.). Genomics 114:171–184

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, Zhu H, Sui J, Wang J, Qiao L (2022b) Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Sci 319:111247

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    Article  CAS  PubMed  Google Scholar 

  • Tariq A, Mushtaq M, Yaqoob H, Bhat BA, Zargar SM, Raza A, Ali S, Charagh S, Mubarik MS, Zaman QU (2023) Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement. GM Crops Food 14:1–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayade AD, Motagi BN, Jadhav MP, Nadaf AS, Koti RV, Gangurde SS, Sharma V, Varshney RK, Pandey MK, Bhat RS (2022) Genetic mapping of tolerance to iron deficiency chlorosis in peanut (Arachis hypogaea L.). Euphytica 218:46

    Article  CAS  Google Scholar 

  • Tripodi P, Singh NK, Abberton M, Nankar AN (2023) Enhancing allele mining for crop improvement amid the emerging challenge of climate change. Front Plant Sci 14:1197086

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuncel A, Pan C, Sprink T, Wilhelm R, Barrangou R, Li L, Shih PM, Varshney RK, Tripathi L, Van Eck J (2023) Genome-edited foods. Nature reviews. Bioengineering 1:799–816

    Google Scholar 

  • Upadhyaya H, Reddy L, Dwivedi S, Gowda C, Singh S (2009) Phenotypic diversity in cold-tolerant peanut (Arachis hypogaea L.) germplasm. Euphytica 165:279–291

    Article  CAS  Google Scholar 

  • Upadhyaya H, Dwivedi S, Vadez V, Hamidou F, Singh S, Varshney R, Liao B (2014) Multiple resistant and nutritionally dense germplasm identified from mini core collection in peanut. Crop Sci 54:679–693

    Article  Google Scholar 

  • Van Tassel DL, DeHaan LR, Diaz-Garcia L, Hershberger J, Rubin MJ, Schlautman B, Turner K, Miller AJ (2022) Re-imagining crop domestication in the era of high throughput phenomics. Curr Opin Plant Biol 65:102150

    Article  PubMed  Google Scholar 

  • Variath MT, Janila P (2017) Economic and academic importance of peanut. In: Varshney R, Pandey M, Puppala N (eds) The peanut genome. Compendium of Plant Genomes. Springer, Cham, pp 7–26. https://doi.org/10.1007/978-3-319-63935-2_2

    Chapter  Google Scholar 

  • Varshney RK, Bohra A (2023) Boosting resilience of global crop production through sustainable stress management. In: Ansari MW, Singh AK, Tuteja N (eds) Global climate change and plant stress management. Wiley, pp 1–5

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda M, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Pandey MK, Puppala N (2017) The peanut genome: an introduction. In: Varshney R, Pandey M, Puppala N (eds) The peanut genome. Compendium of plant genomes. Springer, Cham, pp 1–6

    Chapter  Google Scholar 

  • Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 45:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet 132:797–816

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Barmukh R, Roorkiwal M, Qi Y, Kholova J, Tuberosa R, Reynolds MP, Tardieu F, Siddique KH (2021a) Breeding custom-designed crops for improved drought adaptation. Adv Genet 2:e202100017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021b) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26:631–649

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Pandey MK, Varshney RK (2017) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Front Plant Sci 8:2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686

    Article  PubMed  Google Scholar 

  • Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala U, Upadhyaya H, Sudini H (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145:901–913

    Article  CAS  Google Scholar 

  • Wang JY, Doudna JA (2023) CRISPR technology: a decade of genome editing is only the beginning. Science 379:eadd8643

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y (2018) A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Front Genet 9:652

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z (2019) QTL mapping and QTL× environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). Crop J 7:249–260

    Article  CAS  Google Scholar 

  • Wang L, Yang X, Cui S, Zhao N, Li L, Hou M, Mu G, Liu L, Li Z (2020) High-density genetic map development and QTL mapping for concentration degree of floret flowering date in cultivated peanut (Arachis hypogaea L.). Mol Breed 40:1–14

    Article  Google Scholar 

  • Wang ML, Wang H, Zhao C, Tonnis B, Tallury S, Wang X, Clevenger J, Guo B (2022a) Identification of QTLs for seed dormancy in cultivated peanut using a recombinant inbred line mapping population. Plant Mol Biol Report 40:208–217

    Article  CAS  Google Scholar 

  • Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B (2022b) Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theor Appl Genet 135:1779–1795

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang Z, Guo C, Zhao X, Li Z, Mou Y, Sun Q, Wang J, Yuan C, Li C (2023) Hsf transcription factor gene family in peanut (Arachis hypogaea L.): genome-wide characterization and expression analysis under drought and salt stresses. Front Plant Sci 14:1214732

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanga MA, Shimelis H, Mashilo J, Laing MD (2021) Opportunities and challenges of speed breeding: a review. Plant Breed 140:185–194

    Article  Google Scholar 

  • Wankhade AP, Chimote VP, Viswanatha KP, Yadaru S, Deshmukh DB, Gattu S, Sudini HK, Deshmukh MP, Shinde VS, Vemula AK (2023) Genome-wide association mapping for LLS resistance in a MAGIC population of groundnut (Arachis hypogaea L.). Theor Appl Genet 136:43

    Article  CAS  PubMed  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Hatta MAM, Hinchliffe A, Steed A, Reynolds D (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Watson A, Hickey LT, Christopher J, Rutkoski J, Poland J, Hayes BJ (2019) Multivariate genomic selection and potential of rapid indirect selection with speed breeding in spring wheat. Crop Sci 59:1945–1959

    Article  Google Scholar 

  • Won S, Park JE, Son JH, Lee SH, Park BH, Park M, Park WC, Chai HH, Kim H, Lee J (2020) Genomic prediction accuracy using haplotypes defined by size and hierarchical clustering based on linkage disequilibrium. Front Genet 11:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Luo L, Wan Y, Liu F (2023) Genome-wide characterization of the PP2C gene family in peanut (Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. Front Plant Sci 14:1093913

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1:100005

    Article  PubMed  Google Scholar 

  • Yan L, Jin H, Raza A, Huang Y, Gu D, Zou X (2022) WRKY genes provide novel insights into their role against Ralstonia solanacearum infection in cultivated peanut (Arachis hypogaea L.). Front Plant Sci 13:986673

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan L, Jin H, Raza A, Huang Y, Dp Gu, Zou X (2023) Natural resistance-associated macrophage proteins (NRAMPs) are involved in cadmium enrichment in peanut (Arachis hypogaea L.) under cadmium stress. Plant Growth Regul (Early view). https://doi.org/10.1007/s10725-023-01091-0

    Article  CAS  Google Scholar 

  • Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J (2020) Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant 13:187–214

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Luo L, Li Y, Li H, Zhang X, Zhang K, Zhu S, Li X, Li Y, Wan Y (2023a) Fine mapping of qAHPS07 and functional studies of AhRUVBL2 controlling pod size in peanut (Arachis hypogaea L.). Plant Biotechnol J 21:1785–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Sharif Y, Zhuang Y, Cai T, Wang L, Fu H, Lu W, Ma M, Yang H, Li H et al (2023b) Comprehensive in-silico characterization and expression analysis of UbiA prenyltransferase genes in peanut (Arachis hypogaea L.) against abiotic stresses. Plant Stress 10:100229

    Article  CAS  Google Scholar 

  • Yang Q, Sharif Y, Zhuang Y, Chen H, Zhang C, Fu H, Wang S, Cai T, Chen K, Raza A et al (2023c) Genome-wide identification of germin-like proteins in peanut (Arachis hypogea L.) and expression analysis under different abiotic stresses. Front Plant Sci 13:1044144

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li Y, Cheng Z, Su Q, Jin X, Song Y, Wang J (2023d) Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theor Appl Genet 136:97

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PV, Mir RA (2023) Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM Crops Food 14:1–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeri SB, Bhat RS (2016) Development of late leaf spot and rust resistant backcross lines in JL 24 variety of groundnut (Arachis hypogaea L.). Electron J Plant Breed 7:37–41

    Article  Google Scholar 

  • Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:1–6

    Article  Google Scholar 

  • Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K (2018) Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. GigaScience 7(6):giy066

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu B, Huai D, Huang L, Kang Y, Ren X, Chen Y, Zhou X, Luo H, Liu N, Chen W (2019) Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet 20:1–13

    Article  Google Scholar 

  • Yu B, Jiang H, Pandey MK, Huang L, Huai D, Zhou X, Kang Y, Varshney RK, Sudini HK, Ren X (2020) Identification of two novel peanut genotypes resistant to aflatoxin production and their SNP markers associated with resistance. Toxins 12:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Liu N, Huang L, Luo H, Zhou X, Lei Y, Yan L, Wang X, Chen W, Kang Y (2023) Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.). J Adv Res (Early view). https://doi.org/10.1016/j.jare.2023.09.014

    Article  CAS  Google Scholar 

  • Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol 19:1–7

    Article  Google Scholar 

  • Zaman QU, Raza A, Gill RA, Hussain MA, Wang HF, Varshney RK (2023a) New possibilities for trait improvement via mobile CRISPR-RNA. Trends Biotechnol 41:1335–1338

    Article  CAS  PubMed  Google Scholar 

  • Zaman QU, Raza A, Lozano-Juste J, Chao L, Jones MG, Wang HF, Varshney RK (2023b) Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops. Trends in Biotechnology (Early view). https://doi.org/10.1016/j.tibtech.2023.10.007

    Article  Google Scholar 

  • Zandalinas SI, Fritschi FB, Mittler R (2021) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26:588–599

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D (2017) Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci 8:1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhu S, Zhang K, Wan Y, Liu F, Sun Q, Li Y (2018) Establishment and evaluation of a peanut association panel and analysis of key nutritional traits. J Integr Plant Biol 60:195–215

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L (2019) QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol 19:1–15

    Article  Google Scholar 

  • Zhang H, Chu Y, Dang P, Tang Y, Jiang T, Clevenger JP, Ozias-Akins P, Holbrook C, Wang ML, Campbell H (2020) Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Theor Appl Genet 133:2051–2061

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen S, Shi L, Gong D, Zhang S, Zhao Q, Zhan D, Vasseur L, Wang Y, Yu J et al (2021a) Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat Genet 53:1250–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pandey MK, Wang J, Zhao K, Ma X, Li Z, Zhao K, Gong F, Guo B, Varshney RK (2021b) Chromatin spatial organization of wild type and mutant peanuts reveals high-resolution genomic architecture and interaction alterations. Genome Biol 22:1–21

    Article  Google Scholar 

  • Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P (2022a) BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theor Appl Genet 135:1529–1540

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zeng Q, Liu H, Qi F, Sun Z, Miao L, Li X, Li C, Liu D, Guo J (2022b) Identification of a stable major QTL for fresh-seed germination on chromosome Arahy. 04 in cultivated peanut (Arachis hypogaea L.). Crop J 10:1767–1773

    Article  Google Scholar 

  • Zhang C, Chen Y, Wang L, Liu L, Zhong X, Chu P, Gao M, Chen H, Cai T, Xiong F et al (2023a) Genome-wide identification of papain-like cysteine protease family genes in cultivated peanut (Arachis hypogaea L.) and functional characterization of AhRD21B in response to chilling stress. Environ Exp Bot 209:105272

    Article  CAS  Google Scholar 

  • Zhang C, Xie W, Fu H, Chen Y, Chen H, Cai T, Yang Q, Zhuang Y, Zhong X, Chen K (2023b) Whole genome resequencing identifies candidate genes and allelic diagnostic markers for resistance to Ralstonia solanacearum infection in cultivated peanut (Arachis hypogaea L.). Front Plant Sci 13:1048168

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Hu X, Wang F, Miao H, Chu Y, Yang W, Cui F, Xu S, Guo J, Yu H (2023c) Genetic dissection of additive and epistatic quantitative trait loci controlling pod number per plant in peanut (Arachis hypogaea L.). Euphytica 219:31

    Article  CAS  Google Scholar 

  • Zhang X, Zhang X, Wang L, Liang Y, Liu Q, Zhang J, Xue Y, Tian Y, Zhang H, Li N (2023d) Fine mapping of a QTL and identification of candidate genes associated with cold tolerance during germination in peanut (Arachis hypogaea L.) on chromosome B09 using whole genome re-sequencing. Front Plant Sci 14:1153293

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash C, Zhuang W, He G (2016) QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Mol Breed 36:1–11

    Article  Google Scholar 

  • Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli DJ (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci 8:1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao N, He M, Li L, Cui S, Hou M, Wang L, Mu G, Liu L, Yang X (2020) Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.). PLoS ONE 15:e0231396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Wang L, Qiu D, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D (2023) PSW1, an LRR receptor kinase, regulates pod size in peanut. Plant Biotechnol J 21:2113–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Guo J, Pandey MK, Varshney RK, Huang L, Luo H, Liu N, Chen W, Lei Y, Liao B (2021) Dissection of the genetic basis of yield-related traits in the chinese peanut mini-core collection through genome-wide association studies. Front Plant Sci 12:637284

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Luo H, Yu B, Huang L, Liu N, Chen W, Liao B, Lei Y, Huai D, Guo P (2022a) Genetic dissection of fatty acid components in the Chinese peanut (Arachis hypogaea L.) mini-core collection under multi-environments. PLoS ONE 17:e0279650

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Ren X, Luo H, Huang L, Liu N, Chen W, Lei Y, Liao B, Jiang H (2022b) Safe conservation and utilization of peanut germplasm resources in the oil crops middle-term Genebank of China. Oil Crop Sci 7:9–13

    Article  Google Scholar 

  • Zhu H, Li C, Gao C (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677

    Article  CAS  PubMed  Google Scholar 

  • Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, Chang W-C, Zhang L, Zhang X, Tang R et al (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51:865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou K, Kang D, Kim K-S, Jun T-H (2020) Screening of salinity tolerance and genome-wide association study in 249 peanut accessions (Arachis hypogaea L.). Plant Breed Biotechnol 8:434–438

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the researchers whose contributions have been cited in this review, which have helped us prepare this review paper.

Funding

This work was supported by grants from the National Natural Science Foundation of China to WZ, CZ, and HC, and also from the Food Futures Institute of Murdoch University to RKV.

Author information

Authors and Affiliations

Authors

Contributions

WZ, RKV, and AR conceived the idea. AR wrote the manuscript and designed the table and figures. CZ, HC, YZ, YS, and PS helped with the literature search. AR, CZ, HC, YZ, MKP, RKV, and WZ reviewed and edited the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Rajeev K. Varshney or Weijian Zhuang.

Ethics declarations

Conflict of interest

No conflict of interest was declared.

Additional information

Communicated by Reyazul Rouf Mir.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Chen, H., Zhang, C. et al. Designing future peanut: the power of genomics-assisted breeding. Theor Appl Genet 137, 66 (2024). https://doi.org/10.1007/s00122-024-04575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04575-3

Navigation