Skip to main content
Log in

Identification of the domestication gene GmCYP82C4 underlying the major quantitative trait locus for the seed weight in soybean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process.

Abstract

Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets in the current study are available in the supplementary information published online or from the corresponding authors on reasonable request.

References

  • Abdelghany AM, Zhang SR, Azam M, Shaibu AS, Feng Y, Qi J, Li YF, Tian Y, Hong HL, Li B, Sun JM (2020) Natural variation in fatty acid composition of diverse world soybean germplasms grown in china. Agronomy 10:24

    Article  CAS  Google Scholar 

  • Bandillo NB, Anderson JE, Kantar MB, Stupar RM, Specht JE, Graef GL, Lorenz AJ (2017) Dissecting the genetic basis of local adaptation in soybean. Sci Rep 7:17195

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Jia S, Chen L, Zeng S, Zhao T, Karikari B (2022) Identification of major genomic regions for soybean seed weight by genome-wide association study. Mol Breed 42:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, Diez MJ, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E (2013) A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci U S A 110:17125–17130

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chen X, Liu C, Guo P, Hao X, Pan Y, Zhang K, Liu W, Zhao L, Luo W, He J, Su Y, Jin T, Jiang F, Wang S, Liu F, Xie R, Zhen C, Han W, Xing G, Wang W, Zhao S, Li Y, Gai J (2023) Differential SW16.1 allelic effects and genetic backgrounds contributed to increased seed weight after soybean domestication. J Integr Plant Biol 65:1734–1752

    Article  CAS  PubMed  Google Scholar 

  • Copley TR, Duceppe MO, O’Donoughue LS (2018) Identification of novel loci associated with maturity and yield traits in early maturity soybean plant introduction lines. BMC Genom 19:167

    Article  Google Scholar 

  • Do TD, Chen HT, Vu HTT, Hamwieh A, Yamada T, Sato T, Yan YL, Cong H, Shono M, Suenaga K, Xu DH (2016) Ncl synchronously regulates Na+, K+, and Cl- in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dong N, Sun Y, Guo T, Shi C, Zhang Y, Kan Y, Xiang Y, Zhang H, Yang Y, Li Y, Zhao H, Yu H, Lu Z, Wang Y, Ye W, Shan J, Lin H (2020) UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun 11:2629

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Du J, Wang S, He C, Zhou B, Ruan YL, Shou H (2017) Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot 68:1955–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Zhang M, Zhang Z, Liang S, Fan L, Yang X, Yuan Y, Pan Y, Zhou G, Liu S, Tian Z (2022) Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J 20:1807–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ESt, (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R (2016) Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci U S A 113:12414–12419

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Goettel W, Zhang H, Li Y, Qiao Z, Jiang H, Hou D, Song Q, Pantalone VR, Song BH, Yu D, An YC (2022) POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nat Commun 13:3051

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125:671–683

    Article  CAS  PubMed  Google Scholar 

  • Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D (2012) Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet 124:447–458

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D (2022) Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol 235:502–517

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Harrar Y, Lin C, Reinhart B, Newell NR, Talavera-Rauh F, Hokin SA, Barton MK, Kerstetter RA (2014) Arabidopsis KANADI1 acts as a transcriptional repressor by interacting with a specific cis-element and regulates auxin biosynthesis, transport, and signaling in opposition to HD-ZIPIII factors. Plant Cell 26:246–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikram M, Han X, Zuo JF, Song J, Han CY, Zhang YW, Zhang YM (2020) Identification of QTNs and their candidate genes for 100-Seed weight in soybean (Glycine max L.) using multi-locus genome-wide association studies. Genes 11:714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo H, Lee JY, Lee J-D (2022) Genome-wide association mapping for seed weight in soybean with black seed coats and green cotyledons. Agronomy 12:250

    Article  CAS  Google Scholar 

  • Karikari B, Chen S, Xiao Y, Chang F, Zhou Y, Kong J, Bhat JA, Zhao T (2019) Utilization of interspecific high-density genetic map of RIL population for the QTL detection and candidate gene mining for 100-seed weight in soybean. Front Plant Sci 10:1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Karikari B, Wang Z, Zhou Y, Yan W, Feng J, Zhao T (2020) Identification of quantitative trait nucleotides and candidate genes for soybean seed weight by multiple models of genome-wide association study. Bmc Plant Biol 20:404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M (2014) A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet 127:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Saini M, Taku M, Debbarma P, Mahto RK, Ramlal A, Sharma D, Rajendran A, Pandey R, Gaikwad K, Lal SK, Talukdar A (2022) Identification of quantitative trait loci (QTLs) and candidate genes for seed shape and 100-seed weight in soybean [Glycine max (L.) Merr.]. Front Plant Sci 13:1074245

    Article  PubMed  Google Scholar 

  • Kumawat G, Xu D (2021) A major and stable quantitative trait locus qSS2 for seed size and shape traits in a soybean RIL population. Front Genet 12:646102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L (2022) Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol J 20:1110–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Chen L, Zeng J, Razzaq MK, Xu X, Xu Y, Wang W, He J, Xing G, Gai J (2020) Identification of additive-epistatic QTLs conferring seed traits in soybean using recombinant inbred lines. Front Plant Sci 11:566056

    Article  PubMed  PubMed Central  Google Scholar 

  • Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zheng D, Van K, Lee S-h (2008) QTL mapping for major agronomic traits across 2 years in soybean ( Glycine max L. Merr.). J Crop Sci Biotechnol 11:171–190

    Google Scholar 

  • Li X, Zhang X, Zhu L, Bu Y, Wang X, Zhang X, Zhou Y, Wang X, Guo N, Qiu L, Zhao J, Xing H (2019) Genome-wide association study of four yield-related traits at the R6 stage in soybean. BMC Genet 20:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yan Y, Fujita Y, Xu D (2018) Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci 68:442–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Jiang H, Ye S, Chen W-P, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, Li C (2010) The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 20:539–552

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52:428–436

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Li QT, Xiong Q, Li W, Bi YD, Lai YC, Liu XL, Man WQ, Zhang WK, Ma B, Chen SY, Zhang JS (2016) The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J 86:530–544

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD, Li W, Zhang WK, Ma B, Lai YC, Du WG, Man WQ, Chen SY, Zhang JS (2017) A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant 10:670–684

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Jia J, Liu R, Wei R, Guo Z, Cai Z, Chen B, Liang F, Xia Q, Nian H, Cheng Y (2022) Identification of major QTLs for soybean seed size and seed weight traits using a RIL population in different environments. Front Plant Sci 13:1094112

    Article  PubMed  Google Scholar 

  • Ma M, Wang Q, Li Z, Cheng H, Li Z, Liu X, Song W, Appels R, Zhao H (2015) Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J 83:312–325

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR, Bailey MA, Tamulonis JP, Shipe ER, Carter TE, Parrott WA, Ashley DA, Hussey RS, Boerma HR (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Yang S, Zhang K, He J, Wu C, Ren Y, Gai J, Li Y (2020) Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol 225:1651–1666

    Article  CAS  PubMed  Google Scholar 

  • Murgia I, Tarantino D, Soave C, Morandini P (2011) Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. J Plant Physiol 168:894–902

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen CX, Paddock KJ, Zhang Z, Stacey MG (2021) GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol 229:920–934

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QT, Kisiala A, Andreas P, Neil Emery RJ, Narine S (2016) Soybean seed development: fatty acid and phytohormone metabolism and their interactions. Curr Genomics 17:241–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci 45:2015–2022

    Article  CAS  Google Scholar 

  • Peters JL, Sonsthagen SA, Lavretsky P, Rezsutek M, Johnson WP, McCracken KG (2014) Interspecific hybridization contributes to high genetic diversity and apparent effective population size in an endemic population of mottled ducks (Anas fulvigula maculosa). Conserv Genet 15:509–520

    Article  Google Scholar 

  • Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Liu C, Song L, Li Y, Li M (2017) PaCYP78A9, a cytochrome P450, regulates fruit size in sweet cherry (Prunus avium L.). Front Plant Sci 8:2076

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin J, Wang F, Zhao Q, Shi A, Zhao T, Song Q, Ravelombola W, An H, Yan L, Yang C, Zhang M (2022) Identification of candidate genes and genomic selection for seed protein in soybean breeding pipeline. Front Plant Sci 13:882732

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sedivy EJ, Wu F, Hanzawa Y (2017) Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol 214:539–553

    Article  PubMed  Google Scholar 

  • Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13:211–221

    Article  CAS  PubMed  Google Scholar 

  • Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang M, Hu X, Wang L, Dai J, Xu Y, Chen F (2016) Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco. Electron J Biotechnol 19:15–22

    Article  Google Scholar 

  • Viana JPG, Fang Y, Avalos A, Song Q, Nelson R, Hudson ME (2022) Impact of multiple selective breeding programs on genetic diversity in soybean germplasm. Theor Appl Genet 135:1591–1602

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Sun X, Liu B, Kong F, Pan X, Zhang H (2022) A polygalacturonase gene PG031 regulates seed coat permeability with a pleiotropic effect on seed weight in soybean. Theor Appl Genet 135:1603–1618

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang B, Hao Y, Huang J, Tian A, Liao Y, Zhang J, Chen S (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep-Uk 6:20728

    Article  CAS  ADS  Google Scholar 

  • Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z (2020) Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 7:1776–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H (2015a) The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol 180:2133–2141

    Article  Google Scholar 

  • Wang X, Li Y, Zhang H, Sun G, Zhang W, Qiu L (2015b) Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Mol Biol Rep 42:489–496

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhou S, Wang J, Lin W, Yao X, Su J, Li H, Fang C, Kong F, Guan Y (2023) Genome-wide association study for biomass accumulation traits in soybean. Mol Breeding 43:33

    Article  Google Scholar 

  • Wu Y, Zhou Z, Dong C, Chen J, Ding J, Zhang X, Mu C, Chen Y, Li X, Li H, Han Y, Wang R, Sun X, Li J, Dai X, Song W, Chen W, Wu J (2020) Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics 21:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Kong K, Miao L, He J, Liu T, Zhang K, Yue X, Jin T, Gai J, Li Y (2023) Identification of major quantitative trait loci and candidate genes for seed weight in soybean. Theor Appl Genet 136:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan L, Hofmann N, Li S, Ferreira ME, Song B, Jiang G, Ren S, Quigley C, Fickus E, Cregan P, Song Q (2017) Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. BMC Genom 18:529

    Article  Google Scholar 

  • Yan Q, Cui X, Lin S, Gan S, Xing H, Dou D (2016) GmCYP82A3, a soybean cytochrome P450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses. PLoS ONE 11:e0162253

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang W, He Q, Xiang S, Tian D, Zhao T, Gai J (2019) Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theor Appl Genet 132:2793–2807

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Qu Z, Zhang Y, Zhang X, Lan T, Adelson DL, Wang D, Zhu Y (2017) Seed weight differences between wild and domesticated soybeans are associated with specific changes in gene expression. Plant Cell Rep 36:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Zhan P, Wei X, Xiao Z, Wang X, Ma S, Lin S, Li F, Bu S, Liu Z, Zhu H, Liu G, Zhang G, Wang S (2021) GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theor Appl Genet 134:3941–3950

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Jiang GL (2016) Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet 129:117–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liao X, Cui Y, Ma W, Zhang X, Du H, Ma Y, Ning L, Wang H, Huang F, Yang H, Kan G, Yu D (2019) A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. Plos Genet 15:e1007798

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He J, Wang Y, Xing G, Zhao J, Li Y, Yang S, Palmer RG, Zhao T, Gai J (2015) Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot 66:6311–6325

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Li X, Yang SX, Feng XZ (2017) Identification of ZOUPI orthologs in soybean potentially involved in endosperm breakdown and embryogenic development. Front Plant Sci 8:139

    PubMed  PubMed Central  Google Scholar 

  • Zhao B, Dai A, Wei H, Yang S, Wang B, Jiang N, Feng X (2016) Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol 90:33–47

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Dong H, Chang H, Zhao J, Teng W, Qiu L, Li W, Han Y (2019) Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [Glycine max (L) Merrill]. BMC Genom 20:648

    Article  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the GDAS' Project of Science and Technology Development (2022GDASZH-2022010102, 2020GDASYL-2020102011), Guangdong Basic and Applied Basic Research Foundation (2022A1515111146), Zhanjiang Science and Technology Plan Project (2022A01009), the Core Technology Development for Breeding Program of Jiangsu Province (JBGS-2021-014), Guangdong Pearl River Talents Program (2021CX02N173), and Zhanjiang innovation and entrepreneurship team ‘pilot plan’ (211207157080997).

Author information

Authors and Affiliations

Authors

Contributions

ZW, TZ, and YL conceived and designed the research. YL and WZ conducted the experiments, with the assistance of JT, XY, JG, BZ, CL, YC, JY YL; YL, TZ, and WZ analyzed the data. TZ, FK, and ZW contributed reagents/materials; YL, WZ, YL, JH, DW, and ZW wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tuan-Jie Zhao or Zhen-Yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dechun Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, W., Tang, J. et al. Identification of the domestication gene GmCYP82C4 underlying the major quantitative trait locus for the seed weight in soybean. Theor Appl Genet 137, 62 (2024). https://doi.org/10.1007/s00122-024-04571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04571-7

Navigation