Skip to main content
Log in

Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Four stable QTL for adult plant resistance were identified in wheat line Changwu 357-9, including a new QTL on 2AL showing significant interaction with Yr29 to reduce stripe rust severity.

Abstract

Stripe rust (yellow rust) is a serious disease of bread wheat (Triticum aestivum L.) worldwide. Genetic resistance is considered the most economical, effective and environmentally friendly method to control the disease and to minimize the use of fungicides. The current study focused on characterizing the components of stripe rust resistance and understanding the interactions in Changwu 357-9 (CW357-9)/Avocet S RIL population. A genetic linkage map constructed using a new GenoBaits Wheat 16K Panel and the 660K SNP array had 5104 polymorphic SNP markers spanning 3533.11 cM. Four stable QTL, consistently identified across five environments, were detected on chromosome arms 1BL, 2AL, 3DS, and 6BS in Changwu357-9. The most effective QTL QYrCW357-1BL was Yr29. The 6BS QTL was identified as Yr78, which has been combined with the 1BL QTL in many wheat cultivars and breeding lines. The novel QTL on 2AL with moderate effect showed a stable and significant epistatic interaction with Yr29. The QTL on 3DL should be same as QYrsn.nwafu-3DL and enriches the overall stripe rust resistance gene pool for breeding. Polymorphisms of flanking AQP markers AX-110020417 (for QYrCW357-1BL), AX-110974948 (for QYrCW357-2AL), AX-109466386 (for QYrCW357-3DL), and AX-109995005 (for QYrCW357-6BS) were evaluated in a diversity panel including 225 wheat cultivars and breeding lines. These results suggested that these high-throughput markers could be used to introduce QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, and QYrCW357-6BS into commercial wheat cultivars. Combinations of these genes with other APR QTL should lead to higher levels of stripe rust resistance along with the beneficial effects of multi-disease resistance gene Yr29 on improving resistance to other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data, models, or code generated or used during the study are available from the corresponding author by request.

Abbreviations

ANOVA:

Analysis of variance

APR:

Adult plant resistance

AQP:

Allele-specific quantitative PCR

CIMMYT:

International Maize and Wheat Improvement Center

cM:

CentiMorgan

DS:

Disease severity

GWAS:

Genome-wide association analysis

ICIM:

Inclusive composite interval mapping

IT:

Infection type

IWGSC:

International Wheat Genome Sequencing Consortium

LOD:

Likelihood-of-odds

MAS:

Marker-assisted selection

PCR:

Polymerase chain reaction

Pst :

Puccinia striiformis f. sp. tritici

QTL:

Quantitative trait locus

RIL:

Recombinant inbred line

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeat

References

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Hayden MJ, Keller B, Wellings CR, Park RF, Bariana HS (2009) Relationship between wheat rust resistance genes Yr1 and Sr48 and a microsatellite marker. Plant Pathol 58:1039–1043

    Article  CAS  Google Scholar 

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  CAS  PubMed  Google Scholar 

  • Bulli P, Zhang J, Chao S, Chen X, Pumphrey M (2016) Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3 6:2237–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, He ZH, Lu JL, Li J, Ren Y, Ma CX, Xia XC (2016) Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Mol Breed 36:118

    Article  CAS  Google Scholar 

  • Chen X (2013) Review Article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. Amer J Plant Sci 04:608–627

    Article  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM, Line RF (1995) Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology 85:573–578

    Article  Google Scholar 

  • Clarke J. D. 2009. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Csh Protoc pdb.prot5177

  • Cobo N, Wanjugi H, Lagudah E, Dubcovsky J (2018) A high-resolution map of wheat, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. Plant Genome-US 12:180055

    Article  CAS  Google Scholar 

  • Dong Z, Hegarty JM, Zhang J, Zhang W, Chao S, Chen X, Zhou Y, Dubcovsky J (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust (Guo et al. 2021)on wheat chromosome arm 6BS (Yr78). Theor Appl Genet 130:2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A, Wellings CR (2004) Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Yang Q, Huang F, Zheng H, Sang Z, Xu Y, Zhang C, Wu K, Tao J, Prasanna BM, Olsen MS, Wang Y, Zhang J (2021) Xu Y (2021) Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun. https://doi.org/10.1016/j.xplc.2021.100230

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X (2020) Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant 13:1733–1751

    Article  CAS  PubMed  Google Scholar 

  • Hovmøller MS, Walter S, Justesen AF (2010) Escalating threat of wheat rusts. Science 329:369

    Article  PubMed  Google Scholar 

  • Huang S, Wu J, Wang X, Mu J, Xu Z, Zeng Q, Liu S, Wang Q, Kang Z, Han D (2019) Utilization of the genome-wide wheat 55K SNP array for genetic analysis of stripe rust resistance in common wheat line P9936. Phytopathology 109:819–827

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Liu S, Zhang Y, Xie Y, Wang X, Jiao H, Wu S, Zeng Q, Wang Q, Singh RP, Bhavani S, Kang Z, Wang C, Han D, Wu J (2021) Genome-Wide Wheat 55K SNP-based mapping of stripe rust resistance loci in wheat cultivar Shaannong 33 and their alleles frequencies in current Chinese wheat cultivars and breeding lines. Plant Dis 105:1048–1056

    Article  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191–7203

    Article  CAS  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Jia JZ, Zhao G (2016) Wheat 660 SNP array developed by CAAS. https://wheat.pw.usda.gov/ggpages/topics/Wheat660_SNP_array_developed_by_CAAS. pdf

  • Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015) Genome-wide DArT and SNP scan for QTL associated with resistance to strip rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128:1277–1295

    Article  CAS  PubMed  Google Scholar 

  • Kolmer JA, Lin M, Bai G (2012) Genetics of leaf rust resistance in the winter wheat line CI13227. Crop Sci 52:2166

    Article  Google Scholar 

  • Kolmer JA, Lagudah ES, Lillemo M, Lin M, Bai G (2015) The Lr46 gene conditions partial adult-plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher wheat. Crop Sci 55:2557–2565

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA 114:E913–E921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lan C, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, Zhang Y, Yang E (2014) QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol Breed 34:789–803

    Article  CAS  Google Scholar 

  • Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP (2015) Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet 128:549–561

    Article  CAS  PubMed  Google Scholar 

  • Li J, Dundas I, Dong C, Li G, Trethowan R, Yang Z, Hoxha S, Zhang P (2020) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968–1987. US Department of Agriculture Technical Bulletin, p 74

  • Ling H, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X (2015) Genome-Wide Linkage Mapping of QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2 × Zhong 892. PLoS ONE 10:e145462

    Google Scholar 

  • Liu L, Wang MN, Feng JY, See DR, Chao SM, Chen XM (2018) Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theor Appl Genet 131:1835–1849

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang X, Zhang Y, Jin Y, Xia Z, Xiang M., Huang S, Qiao L, Zheng, W, Zeng Q, Wang Q, Yu R, Singh RP, Bhavani, S, Kang Z, Han D, Wang, C and Wu J (2022) Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theor Appl Genet 135:351–365

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zhu J, Lou X, Lu Y (2003) A method for marker-assisted selection based on QTLs with epistatic effects. Genetica 119:75–86

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Müller H, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu F, Bevan MW, Leroy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Simkova H, Dolezel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. P Natl Acad Sci USA 110:7940–7945

    Article  CAS  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171:2013–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, And Xia XC (2017) Catalogue of gene symbols for wheat: 2017 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283

    Article  Google Scholar 

  • Naruoka Y, Garland-Campbell KA, Carter AH (2015) Genome-wide association mapping for stripe rust (Puccinia striiformis f. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theor Appl Genet 128:1083–1101

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Ponce-Molina LJ, Huerta-Espino J, Singh RP, Basnet BR, Alvarado G, Randhawa MS, Lan CX, Aguilar-Rincón VH, Lobato-Ortiz R, García-Zavala JJ (2018) Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero.’ Plant Dis 102:421–427

    Article  CAS  PubMed  Google Scholar 

  • Qiao L, Li H, Wang J, Zhao J, Zheng X, Wu B, Du W, Wang J, Zheng J (2022) Analysis of genetic regions related to field grain number per spike from Chinese wheat founder parent Linfen 5064. Front Plant Sci 12:808136

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES (2006) Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, Lagudah ES (2013) Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In: Proceedings Borlaug global rust initiative, technical workshop, New Delhi, p 17.1, 19–22 August 2013

  • Vazquez MD, Zemetra T, Peterson CJ, Chen XM, Heesacker A, Mundt CC (2015) Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theor Appl Genet 128:1307–1318

    Article  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Wang QL, Chen XM, Wang MJ, Mu JM, Lv XN, Huang LL, Han DJ, Kang ZS (2016) Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Can J Plant Pathol 38:317–324

    Article  CAS  Google Scholar 

  • Wu J, Wang X, Chen N, Yu R, Yu S, Wang Q, Huang S, Wang H, Singh RP, Bhavani S, Kang Z, Han D, Zeng Q (2020) Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis 104:1751–1762

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu R, Wang H, Zhou C, Huang S, Jiao H, Yu S, Nie X, Wang Q, Liu S, Weining S, Singh RP, Bhavani S, Kang Z, Han D, Zeng Q (2021) A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnol J 19:177–191

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu RD, Xia Z, Ye X, Zhu J (2008) QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  CAS  Google Scholar 

  • Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9:e105593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Q, Wu J, Liu S, Chen X, Yuan F, Su P, Wang Q, Huang S, Mu J, Han D, Kang Z, Chen XM (2019) Genome-wide mapping for stripe rust resistance loci in common wheat cultivar Qinnong 142. Plant Dis 103:439–447

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Liu D, Zhang X, Wu Q, Liu S, Zeng Q, Wang Q, Wang C, Li C, Singh RP, Bhavani S, Kang Z, Han D, Zheng W, Wu J (2021) Combined linkage and association mapping reveals two major QTL for stripe rust adult plant resistance in Shaanmai 155 and their haplotype variation in common wheat germplasm. Crop J. https://doi.org/10.1016/j.cj.2021.09.006

    Article  Google Scholar 

  • Zhou XL, Wang WL, Wang LL, Hou DY, Jing JX, Wang Y, Xu ZQ, Yao Q, Yin JL, Ma DF (2011) Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor Appl Genet 123:431–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R.A. McIntosh, Plant Breeding Institute, University of Sydney, for language editing and proofreading of the draft manuscript. This study was supported financially by National Key R&D Program of China (2021YFD1401000 and 2021YFD1200600), International Cooperation and Exchange of the National Natural Science Foundation of China (31961143019), National Science Foundation for Young Scientists in China (31901494 and 31901869), National Natural Science Foundation of China (31971890), China Postdoctoral Science Foundation funding (2021M702698), and National “111 plan” (BP0719026).

Funding

This study was funded by the Department of Plant Protection at the University of Northwest A&F.

Author information

Authors and Affiliations

Authors

Contributions

SH designed and conducted the experiments, analyzed the data, and wrote the manuscript. YBZ, HR, XL, XZ, CLZ, QDZ, and QLW participated in creation of the genetic populations and assisted in analysis of the SNP array data. YBZ, HR, ZYZ, XTW, and SJL participated in greenhouse and field experiments and contributed to genotyping. RPS, SB, and ZSK participated in revision of the manuscript. JHW, DJH, and ZSK conceived and directed the project and revised the manuscript.

Corresponding authors

Correspondence to Jianhui Wu, Dejun Han or Zhensheng Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Reem Aboukhaddour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhang, Y., Ren, H. et al. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theor Appl Genet 135, 2501–2513 (2022). https://doi.org/10.1007/s00122-022-04133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04133-9

Navigation