Skip to main content
Log in

Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The genetic diversity and loci underlying agronomic traits were analyzed by the reads coverage and genome-wide association study based genotyping-by-sequencing in a diverse population consisting of 199 accessions.

Abstract

Triticale (× Triticosecale Wittmack) is an economically important grain forage and energy crop planted worldwide for its high biomass. Little is known about the genetic diversity and loci underlying agronomic traits in triticale. We performed genotyping-by-sequencing of 199 cultivars and mapped reads to the A, B, D, and R genomes for karyotype analysis. These cultivars could mostly be grouped into five types. Some chromosome abnormalities occurred with high frequency, such as 2D (2R) substitution, deletion of the long arm of chromosome 2D or the short arm of 5R, and translocation of the long arms of 7D/7A, the short arms of 6D/6A, or the long arms of 1D/1A. We chose only widely planted hexaploid triticale cultivars (153) for genome-wide association study. These cultivars could be divided into nine distinct groups, and the linkage disequilibrium decay was 25.4 kb in this population. We identified 253 significant marker-trait associations (MTAs) on 20 chromosomes, except 7R. Twenty-one reliable MTAs were identified repeatedly over two environments. We predicted 16 putative candidate genes involved in plant growth and development using the genome sequences of wheat and rye. These results provide a basis for understanding the genetic mechanisms of agronomic traits and will benefit the breeding of improved hexaploid triticale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

GBS:

Genotyping-by-sequencing

GWAS:

Genome-wide association study

MTAs:

Marker-trait associations

PH:

Plant height

UIL:

Uppermost internode length

SL:

Spike length

SNS:

Spikelet number per spike

GNS:

Grain number per spike

SSP:

Seed setting percentage

TGW:

Thousand-grain weight

GL:

Grain length

GW:

Grain width

GA:

Grain area

References

  • Akram S, Arif MAR, Hameed A (2021) A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). J Appl Genet 62:27–41

    Article  CAS  PubMed  Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-basedestimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alheit KV, Busemeyer L, Liu WX, Maurer HP, Gowda M, Hahn V, Weissmann S, Reif JC, Würschum T (2014) Multiple-line cross QTL mapping for biomass yield and plant height in triticale (× Triticosecale Wittmack). Theor Appl Genet 127:251–260

    Article  PubMed  Google Scholar 

  • Ayaad M, Han ZM, Zheng K, Hu G, Abo-Yousef M, Sobeih SES, Xing YZ (2021) Bin-based genome-wide association studies reveal superior alleles for improvement of appearance quality using a 4-way MAGIC population in rice. J Adv Res 28:183–194

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Machler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (2014) The abiotic stress response and adaptation of triticale. Cereal Res Commun 42:359–375

    Article  Google Scholar 

  • Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C (2017) Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytol 215:1026–1038

    Article  CAS  PubMed  Google Scholar 

  • Browning BL, Yu Z (2009) Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am J Hum Genet 85:847–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassani E, Bertolini E, Badone FC, Landoni M, Gavina D, Sirizzotti A, Pilu R (2009) Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breeding 24:375–385

    Article  CAS  Google Scholar 

  • Cheng ZJ, Murata M (2002) Triticale: a promising addition to the worldis cereal grains. Genes Genet Syst 77:23–29

    Article  PubMed  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa CT, Albuquerque ACS, Nascimento Junior A, Marcelino FC, Pereira JF (2007) Genetic diversity of Brazilian triticales evaluated with genomic wheat microsatellites. Pesqui Agropecu Bras 42:1577–1586

    Article  Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44:349–366

    Article  CAS  Google Scholar 

  • Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Müller AH, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166:1912–1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dou QW, Tanaka H, Nakata N, Tsujimoto H (2006) Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticale. Theor Appl Genet 114:41–47

    Article  CAS  PubMed  Google Scholar 

  • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9:516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2017) Statistics division of food and agriculture organization of the United Nations. Available from http://faostat3.fao.org/browse/Q/QC/E, Accessed on May 8th

  • Finno CJ, Aleman M, Higgins RJ, Madigan JE, Bannasch DL (2014) Risk of false positive genetic associations in complex traits with underlying population structure: a case study. Vet J 202:543–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox PN, Skovmand B, Thompso BK, Braun HJ, Cormier R (1990) Yield and adaptation of hexaploid spring triticale. Euphytica 47:57–64

    Article  Google Scholar 

  • Hao M, Luo JT, Zhang LQ, Yuan ZW, Yang YW, Wu M, Chen WJ, Zheng YL, Zhang HG, Liu DC (2013) Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica 193:347–357

    Article  CAS  Google Scholar 

  • Henriques R, Magyar Z, Bögre L (2013) S6K1 and E2FB are in mutually antagonistic regulatory links controlling cell growth and proliferation in Arabidopsis. Plant Signal Behave 8:e24367

    Article  CAS  Google Scholar 

  • Huber DP, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J (2005) Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol 25:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M (2016) AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun 7:13245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil HB, Ehdaeivand MR, Xu Y, Laroche A, Gulick PJ (2015) Identification and characterization of rye genes not expressed in allohexaploid triticale. BMC Genom 16:1–11

    Article  CAS  Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Kuleung C, Baenziger PS, Kachman SD, Dweikat I (2006) Evaluating the genetic diversity of triticale with wheat and rye SSR markers. Crop Sci 46:1692–1700

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Chen J, Wu P, Zhang J, Chu C, See D, Brown-Guedira G, Zemetra R, Souza E (2011) Quantitative trait loci analysis for the effect of Rht-B1 dwarfing gene on coleoptile length and seedling root length and number of Bread Wheat. Crop Sci 51:2561–2568

    Article  Google Scholar 

  • Li MX, Yeung JMY, Cherny SS, Shan PC (2012) Evaluating the effective numbers of independent tests and significant p value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131:747–756

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang P, Menzies NW, Lombi E, Kopittke PM (2018) Effects of methyl jasmonate on plant growth and leaf properties. J Plant Nutr Soil Sci 181:409–418

    Article  CAS  Google Scholar 

  • Li YF, Zeng XQ, Zhuang H, Chen H, Zhang T, Zhang J, Zheng H, Tang J, Wang HL, Ren SX, Ling YH, He GH (2019) Characterization and fine mapping of nonstop glumes 2 (nsg2) mutant in rice (Oryza sativa L.). Plant Biotechnol 36:125–134

    Article  CAS  Google Scholar 

  • Li C, Tao RF, Li Y, Duan MH, Xu JH (2020) Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa). Genomics 112:2119–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu WX, Gowda M, Reif JC, Hahn V, Ruckelshausen A, Weissmann EA, Maurer HP, Würschum T (2014) Genetic dynamics underlying phenotypic development of biomass yield in triticale. BMC Genomics 15:458

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WX, Leiser WL, Reif JC, Tucker MR, Losert D, Weissmann S, Hahn V, Maurer HP, Würschum T (2016) Multiple-line cross QTL mapping for grain yield and thousand kernel weight in triticale. Plant Breed 135:567–573

    Article  CAS  Google Scholar 

  • Lou GM, Chen PL, Zhou H, Xiong JW, Wan SS, Zheng YY, Alam M, Liu RJ, Zhou Y, Yang HY, Tian YH, Bai JL, Rao WT, Tan X, Gao HZ, Li YH, Gao GJ, Zhang QD, Li XH, Liu CG, He YQ (2021) FLOURY ENDOSPERM19 encoding a class I glutamine amidotransferase affects grain quality in rice. Mol Breed 41:1–15

    Article  CAS  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1987) Cytogenetics of Triticale. Plant Breed Rev 5:41–93

    Google Scholar 

  • Ma XF, Gustafson JP (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot-London 101:825–832

    Article  Google Scholar 

  • McGoverin CM, Snyders F, Muller N, Botes W, Fox G, Manley M (2011) A review of triticale uses and the effect of growth environment on grain quality. J Sci Food Agr 91:1155–1165

    Article  CAS  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA-CSSA, Madison, pp 99–118

    Google Scholar 

  • Mergoum M, Gómez-Macpherson H (2004) Triticale improvement and production FAO Plant Production and Protection Papers Food and Agriculture Organization of the United Nations. Food & Agriculture Org, Rome, p 179

    Google Scholar 

  • Niedziela A, Orłowska R, Machczyńska J, Bednarek PT (2016) The genetic diversity of triticale genotypes involved in Polish breeding programs. Springerplus 5:1–7

    Article  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer KFX, Guo LL, Poland J, Pozniak CJ, Walkowiak S, Melonek J, Praz CR, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, Börner A, Byrns B, Čížková J, Fowler DB, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, Myśków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, Šimková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov AV, Vrána J, Bauer E, Bolibok-Bragoszewska H, Doležel J, Hall A, Jia JZ, Korzun V, Laroche A, Ma XF, Ordon F, Özkan H, Rakoczy-Trojanowska M, Scholz U, Schulman AH, Siekmann D, Stojałowski S, Tiwari VK, Spannagl M, Stein N (2021) Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53:564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi Y, Bihamta MR, Taleei A, Alipour H, Ingvarsson PK (2019) Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol 19:1–19

    Article  CAS  Google Scholar 

  • Sakiroglu M, Brummer EC (2017) Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor Appl Genet 130:261–268

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Ceccarelli S, Hamblin S (1993) Estimation of heritability from varietal trials data. Theor Appl Genet 86:437–441

    Article  CAS  PubMed  Google Scholar 

  • Sun TP (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6:e0103

    Article  PubMed  PubMed Central  Google Scholar 

  • Tams SH, Bauer E, Oettler G, Melchinger AE (2004) Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet 108:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evolut 28:2731–2739

    Article  CAS  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Torkamaneh D, Jérme L, Boyle B, Hyten DL, Belzile F (2021) A bumper crop of SNPs in soybean through high-density genotyping-by-sequencing (HD-GBS). Plant Biotechnol J 19:860–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyrka M, Bednarek PT, Kilian A, Wędzony M, Hura T, Bauer E (2011) Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 401:391–401

    Article  Google Scholar 

  • Tyrka M, Tyrka D, Wędzony M (2015) Genetic map of triticale integrating microsatellite DArT and SNP markers. PLoS ONE 10:e0145714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyrka M, Oleszczuk S, Rabiza-Swider J, Wos H, Wedzony M, Zimny J, Ponitka A, Ślusarkiewicz-Jarzina A, Metzger RJ, Baenziger PS (2018) Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Mol Breeding 38:46

    Article  CAS  Google Scholar 

  • Wajdzik K, Gołębiowska G, Dyda M, Gawrońska K, Rapacz M, Wędzony M (2019) The QTL Mapping of the important breeding traits in winter triticale (× Triticosecale Wittmack). Cereal Res Commun 47:395–408

    Article  CAS  Google Scholar 

  • Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenland AJ, Boulton MI, Powell W (2012) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  CAS  Google Scholar 

  • Wu YF, Lee SK, Yoo Y, Wei JH, Kwon SY, Lee SW, Jeon JS, An G (2018) Rice Transcription Factor OsDOF11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes. Mol Plant 11:833–845

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Liu WX, Busemeyer L, Tucker MR, Reif JC, Weissmann EA, Hahn V, Ruckelshausen A, Maurer HP (2014) Mapping dynamic QTL for plant height in triticale. BMC Genet 15:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan ZH, Wan YF, Liu KF, Zheng YL, Wang DW (2002) Identification of a novel HMW-glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Sci Bull 47:222–226

    Article  Google Scholar 

  • Yang WN, Guo ZL, Huang CL, Duan LF, Chen GX, Jiang N, Fang W, Feng H, Xie WB, Lian XM, Wang GW, Luo QM, Zhang QF, Liu Q, Xiong LZ (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Ding CQ, Xu BC, Chen CT, Narsai R, Whelan J, Hu ZY, Zhang MF (2015) A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance. Sci Rep 5:14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MM, Dong J, Zhao WC, Gao X (2016) Characterization of proteins involved in early stage of wheat grain development by iTRAQ. J Proteomics 136:157–166

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xiong Y, Liu RY, Xue HW, Yang ZB (2019) The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. P Natl Acad Sci USA 116:16121–16126

    Article  CAS  Google Scholar 

  • Zhao LB, Ning SZ, Yi YJ, Zhang LQ, Yuan ZW, Wang JR, Zheng YL, Hao M, Liu DC (2018) Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics 19:1–9

    Article  CAS  Google Scholar 

  • Zhu F (2018) Triticale: Nutritional composition and food uses. Food Chem 241:468–479

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the QingHai Science and Technology Department (2019-ZJ-982Q), the National Natural Science Foundation of China (32160439).

Author information

Authors and Affiliations

Authors

Contributions

DC and BL conceived and designed the experiments. DC, DW and MH performed the experiments, and SL analyzed the data. DC and BL wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ming Hao or Baolong Liu.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest, and they approved the publication.

Additional information

Communicated by Thomas Lubberstedt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2022_4064_MOESM1_ESM.docx

Supplementary file1 Fig.S1: Chromosome constitutions of five ploidy species identified by fluorescent in situ hybridization (FISH). (a) Octaploid triticale (AABBDDRR), (b) hexaploid triticale (AABBRR), (c) hexaploid wheat (AABBDD), (d) tetraploid wheat (AABB), (e) rye (RR). Red FISH signals are from probe pSc119.2; Green signals are from probe pTa535 in a-d, while (AAC)5 in e. Fig.S2: Partial deletion of the short arm of chromosome 5R in triticale accessions based on read coverage. Fig.S3: Chromosomal translocations in triticale accessions based on read coverage. (a) Long arm of 7D/7A. (b) Short arm of 6D/6A. (c) Long arm of 1D/1A. Fig.S4: Insertion and deletion of seven chromosome segments in triticale accessions. Fig.S5: Distribution of 434,304 reliable SNPs used in genetic diversity analysis in the wheat and rye genomes. X-axis shows the position of SNPs on the chromosomes. Different colors represent the density of SNPs within a sliding window of 1 Mb. Fig.S6: Frequency distribution of 10 agronomic traits in 153 hexaploid triticale accessions. Fig.S7: Quantile-quantile (QQ) plots for ten agronomic traits. (DOCX 7773 kb)

122_2022_4064_MOESM2_ESM.xlsx

Supplementary file2 Table S1: Information on accessions used in this study. Table S2: Distribution of SNP markers on hexaploid triticale chromosomes. Table S3: Phenotypic variation of 10 agronomic traits over three environments. Table S4: Details of significant MTAs linked to 10 agronomic traits identified by GWAS and based on wheat and rye genome annotations. Table S5: Physical position comparison between the reported loci and MTAs identified in this study (XLSX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Wang, D., Li, S. et al. Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale. Theor Appl Genet 135, 1705–1715 (2022). https://doi.org/10.1007/s00122-022-04064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04064-5

Navigation