Skip to main content
Log in

A worldwide maize panel revealed new genetic variation for cold tolerance

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A large association panel of 836 maize inbreds revealed a broader genetic diversity of cold tolerance, as predominantly favorable QTL with small effects were identified, indicating that genomic selection is the most promising option for breeding maize for cold tolerance.

Abstract

Maize (Zea mays L.) has limited cold tolerance, and breeding for cold tolerance is a noteworthy bottleneck for reaching the high potential of maize production in temperate areas. In this study, we evaluate a large panel of 836 maize inbred lines to detect genetic loci and candidate genes for cold tolerance at the germination and seedling stages. Genetic variation for cold tolerance was larger than in previous reports with moderately high heritability for most traits. We identified 187 significant single-nucleotide polymorphisms (SNPs) that were integrated into 159 quantitative trait loci (QTL) for emergence and traits related to early growth. Most of the QTL have small effects and are specific for each environment, with the majority found under control conditions. Favorable alleles are more frequent in 120 inbreds including all germplasm groups, but mainly from Minnesota and Spain. Therefore, there is a large, potentially novel, genetic variability in the germplasm groups represented by these inbred lines. Most of the candidate genes are involved in metabolic processes and intracellular membrane-bounded organelles. We expect that further evaluations of germplasm with broader genetic diversity could identify additional favorable alleles for cold tolerance. However, it is not likely that further studies will find favorable alleles with large effects for improving cold tolerance in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLUE:

Best linear unbiased estimators

Fv/Fm :

Quantum efficiency of photosystem II

GWAS:

Genome-wide association analyses

QTL:

Quantitative trait loci

SNP:

Single-nucleotide polymorphism

SPAD:

Soil–Plant Analyses Development is the relative amount of chlorophyll estimated by measuring the absorbance of the leaf in two wavelength regions

References

  • Allam M, Revilla P, Djemel A, Tracy W, Ordás B (2016) Identification of QTLs involved in cold tolerance in sweet × field corn. Euphytica 208:353–365

    Article  CAS  Google Scholar 

  • Álvarez-Iglesias L, Roza-Delgado B, Roger M, Revilla P, Pedrol N (2017) A simple, fast and accurate screening method to estimate maize (zea mays L) tolerance to drought at early stages. Maydica 62:M34

    Google Scholar 

  • Bradbury P, Zhang Z, Kroon D, Casstevens T, Ramdoss Y, Buckler E (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chiapusio G, Sánchez A, Reigosa M, González L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453

    Article  CAS  Google Scholar 

  • De Bertoldi C, De Leo M, Braca A, Ercoli L (2009) Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavones C-glycosides. Chemoecology 19:169–176

    Article  CAS  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan C, Hao Z, Yan J, Li G (2015) Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics 16:793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flint-Garcia S, Thornsberry J, Buckler S (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Frascaroli E, Landi P (2013) Divergent selection in a maize population for germination at low temperature in controlled environment: study of the direct response, of the trait inheritance and of correlated responses in the field. Theor Appl Genet 126:733–746

    Article  PubMed  Google Scholar 

  • Frascaroli E, Revilla P (2018) Genomics of cold tolerance in maize. In: Bennetzen J, Flint-Garcia S, Hirsch C, Tuberosa R (eds) The maize genome. Springer Nature Inc, Switzerland, pp 287–303

    Chapter  Google Scholar 

  • Gao X, Becker LC, Becker DM, Starmer JD, Province MA (2010) Avoiding the high Bonferroni penalty in genome-wide association studies. Genet Epidemiol 34:100–105

    PubMed  PubMed Central  Google Scholar 

  • Gouesnard G, Negro S, Laffray A, Glaubitz J, Melchinger A, Revilla P, Moreno-Gonzalez J, Madur D, Combes V, Tollon-Cordet C, Laborde J, Kermarrec D, Bauland C, Moreau L, Charcosset A, Nicolas S (2017) Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theor Appl Genet 130:2165–2189

    Article  CAS  PubMed  Google Scholar 

  • Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128:1957–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra-Peraza O, Leipner J, Reimer R, Thuy Nguyen H, Stamp P, Fracheboud Y (2011) Temperature at night affects the genetic control of acclimation to cold in maize seedlings. Maydica 56:366–377

    Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimated an interpreting heritability for plant breeding: An update. In: Janick J (ed) Plant Breeding Reviews, Jonh Wiley & Sons Inc. Hoboken, New Jersey, U.S.A., pp 9–112

    Google Scholar 

  • Hu G, Li Z, Lu Y, Li C, Gong S, Yan S, Li G, Wang M, Ren H, Guan H, Zhang Z, Qin D, Chai M, Yu J, Li Y, Yang D, Wang T, Zhang Z (2017) Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci Rep 7:10840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Zhang J, Li W, Hu W, Duan L, Feng Y, Que F, Yue B (2013) Genome wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J Integr Plant Biol 55:735–744

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Galindo JC, Malvar RA, Butrón A, Santiago R, Samayoa LF, Caicedo M, Ordás B (2019) Mapping of resistance to corn borers in a MAGIC population of maize. BMC Plant Biol 19:1–17

    Article  CAS  Google Scholar 

  • John A (1996) Improving suboptimal temperature tolerance in maize—the search for variation. J Exp Bot 47:307–323

    Article  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under feld conditions. J Exp Bot 56:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Kucharik C (2006) A multidecadal trend of earlier corn planting in the central U.S.A. Agron J 98:1544–1550

    Article  Google Scholar 

  • Leipner J, Stamp P (2009) Chilling stress in maize seedlings. In: Bennetzen J, Hake S (eds) Handbook of maize: its biology. Springer Inc, Heidelberg, pp 291–310

    Chapter  Google Scholar 

  • Li D, Qiao H, Qiu W, Xu X, Liu T, Jiang Q, Liu R, Jiao Z, Zhang K, Bi L, Chen R, Kan Y (2018) Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genomics 19:730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Du Y, He C, Dietrich C, Li J, Ma X, Wang R, Liu Q, Liu S, Wang G, Schnable P, Zheng J (2019) Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot 70:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Muse SV (2005) PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics (Oxford, England) 21:2128–2129

    Article  CAS  Google Scholar 

  • Lv Y, Hussain M, Luo D, Tang N (2019) Current understanding of genetic and molecular basis of cold tolerance in rice. Mol Breed 39:159

    Article  CAS  Google Scholar 

  • McCarty D, Latshaw S, Wu S, Suzuki M, Hunter C, Avigne W, Koch K (2013) Mu-seq: sequence-based mapping and identification of transposon induced mutations. PLoS ONE 8(10):e77172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro JAR, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Ortega A (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nature Genet 49:476

    Article  CAS  Google Scholar 

  • Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics 16:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla P, Malvar R, Cartea M, Butrón A, Ordás A (2000) Inheritance of cold tolerance at emergence and during early season growth in maize. Crop Sci 40:1579–1585

    Article  Google Scholar 

  • Revilla P, Butrón A, Cartea M, Malvar R, Ordás A (2005) Breeding for cold tolerance. In: Ashraf M, Harris P (eds) Abiotic Stresses. The Haworth Press Inc, New York, Plant resistance through breeding and molecular approaches, pp 301–398

    Google Scholar 

  • Revilla P, Rodríguez V, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger A, Schön C, Bauer E, Altmann T, Brunel D, Moreno-González J, Campo L, Ouzunova M, Laborde J, Álvarez Á, Ruíz de Galarreta J, Malvar R (2014) Cold tolerance in two large maize inbred panels adapted to European climates. Crop Sci 54:1981–1991

    Article  Google Scholar 

  • Revilla P, Rodríguez V, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger A, Schön C, Bauer E, Altmann T, Brunel D, Moreno-González J, Campo L, Ouzunova M, Álvarez Á, Ruíz de Galarreta J, Laborde J, Malvar R (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez V, Butrón A, Rady M, Soengas P, Revilla P (2014) Identification of QTLs involved in the response to cold stress in maize (Zea mays L.). Mol Breed 33:363–371

    Article  CAS  Google Scholar 

  • Romay M, Millard M, Glaubitz J, Peiffer J, Swarts K, Casstevens T, Elshire R, Acharya C, Mitchell S, Flint Garcia S, McMullen M, Holland J, Buckler E, Gardner C (2013) Comprehensive genotyping of the. SA national maize inbred seed bank. Genome Biol 14:55

    Article  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev E, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski J, Tingey SV, Miao G, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Li G, Tian Z, Wang Z, Wang X, Zhu Y, Chen Y, Guo S, Qi J, Zhang X, Ku L (2016) Genetic dissection of seed vigour traits in maize (Zea mays L.) under low-temperature conditions. J Genet 95:1017–1022

    Article  PubMed  Google Scholar 

  • Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P (2014) Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Plant Mol Biol 85:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobkowiak A, Jończyk M, Adamczyk J, Szczepanik J, Solecka D, Kuciara I, Hetmańczyk K, Trzcinska-Danielewicz J, Grzybowski M, Skoneczny M, Fronk J, Sowiński P (2016) Molecular foundations of chilling-tolerance of modern maize. BMC Genomics 17:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strigens A, Grieder C, Haussmann B, Melchinger A (2012) Genetic variation among inbred lines and testcrosses of maize for early growth parameters and their relationship to final dry matter yield. Crop Sci 52:1084–1092

    Article  Google Scholar 

  • Strigens A, Freitag N, Gilbert X, Grieder C, Riedelsheimer C, Schrag T, Messmer R, Melchinger A (2013) Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ 36:1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Ulitsky I, Bartel D (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Habeber G, Mayer KFX, Ordás B, Pausch H, Tellier A, Tellier A, Bauer E, Schön CC (2016) A comprehensive study of the genomic differentiation between temperate dent and flint maize. Genome Biol 17:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLOS Genet 10(12):e1004845

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Tang J, Han B, Huang X (2019) Advances in genome-wide association studies of complex traits in rice. Theor Appl Genet 133:1415–1425

    Article  PubMed  Google Scholar 

  • Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide Association Studies in Maize: Praise and Stargaze. Mol Plant 10:359–374

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A (2018) Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol 177:1108–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi Q, Malvar R, Álvarez-Iglesias L, Ordás B, Revilla P (2020) Dissecting the genetics of cold tolerance in a multiparental maize population. Theor Appl Genet 133:503–516

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs W, Vroh B, Yamasaki M, Doebley J, McMullen M, Gaut B, Nielsen D, Holland J, Kresovich S, Buckler E (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, Gore M, Bradbury P, Yu J, Arnett D, Ordovas J, Buckler E (2010) Mixed linear model approach adapted for genome-wide association studies. Nature Genet 44:355–360

    Article  CAS  Google Scholar 

  • Zila C, Ogut F, Romay M, Gardner C, Buckler E, Holland J (2014) Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biol 14:372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Seed from inbred lines of the panel was provided by the North Central Regional Plant Introduction Station of the USA.

Funding

This work was financed by the Spanish Ministerio de Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI), and the European Fund for Regional Development (FEDER), UE (project code AGL2016-77628-R, PID2019-108127RB-I00). The stage of Yi Qiang in Spain was paid by the China Scholarship Council (C.S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Revilla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jianbing Yan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4100 kb)

Supplementary file2 (DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Q., Álvarez-Iglesias, L., Malvar, R.A. et al. A worldwide maize panel revealed new genetic variation for cold tolerance. Theor Appl Genet 134, 1083–1094 (2021). https://doi.org/10.1007/s00122-020-03753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03753-3

Keywords

Navigation