Skip to main content

Genomics of Cold Tolerance in Maize

  • Chapter
  • First Online:
The Maize Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Maize originated in tropical areas and improving cold tolerance is an important breeding objective for cultivation in high latitudes. We review the main limitations in understanding and improving cold tolerance in maize and the contribution of genomics in dissecting the genetic basis of the trait and selecting better genotypes. Physiological analyses revealed that non-optimal temperature exerts detrimental effects on a multitude of metabolic functions at different growing stages, each under the control of independent gene sets. Loci controlling cold tolerance at different growing stages have been investigated by means of linkage mapping or genome-wide association, revealing that no major genes are responsible for the trait. This finding was confirmed in transcriptomic studies that always revealed multiple candidates, and a large amount of data is being collected that altogether will make it possible to obtain a more coherent picture of response to cold. To harness the increasing body of information available from the maize genome sequence and gene expression data, new bioinformatics tools will be helpful for integrating the big-data obtained from the large-scale genomics and phenomics experiments. With the enhancement of knowledge, plant science is shifting its focus from “explanatory” to “predictive” and from a plant breeding perspective the focus will be predicting the breeding value of the best genotypes by using molecular information. The future strategies for selection of cold tolerance will involve intensive genotyping, high-precision phenotyping and advanced statistical analyses to predict the optimal genotypes for more time- and cost-efficient breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghani AH, Lübberstedt T (2013) Parent selection—usefulness and prediction of hybrid performance. In: Lübberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer, Dordrecht, pp 349–368

    Google Scholar 

  • Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Allam M, Revilla P, Djemel A, Tracy WF, Ordás B (2016) Identification of QTLs involved in cold tolerance in sweet x field corn. Euphytica 208:353–365

    Article  CAS  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Tognoni F, Irigoyen JJ, Sanchez-Diaz M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Bioch 39:1067–1073

    Article  CAS  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Bhosale SU, Rymen B, Beemster GTS, Melchinger AE, Reif JC (2007) Chilling tolerance of central European maize lines and their factorial crosses. Ann Bot 100:1315–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (1988) Plant Breeding for stress environments. CRC Press, Inc., Boca Ratón

    Google Scholar 

  • Boutté Y, Grebe M (2009) Cellular processes relying on sterol function in plants. Curr Opin Plant Biol 12:705–713

    Article  CAS  PubMed  Google Scholar 

  • Brenner EA, Beavis WD, Andersen JR, Lübberstedt T (2013) Prospects and limitations for development and application of functional markers in plants. In: Lübberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer, Dordrecht, pp 329–346

    Chapter  Google Scholar 

  • Caffarri S, Frigerio S, Olivieri E, Righetti PG, Bassi R (2005) Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions. Proteomics 5:758–768

    Article  CAS  PubMed  Google Scholar 

  • Chiappetta L, Tomes D, Xu D, Sivasankar S, Sanguineti MC, Tuberosa R (2005) DREB1 overexpression improves tolerance to low temperature in maize. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution” Bologna, Italy, Avenue media, Bologna, Italy, pp 533–544

    Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darby HM, Lauer JG (2002) Planting date and hybrid influence on corn forage yield and quality. Agron J 94:281–289

    Article  Google Scholar 

  • De Santis A, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119:743–754

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santis A, Frascaroli E, Baraldi E, Carnevali F, Landi P (2011) The activity of the plant mitochondrial inner membrane anion channel (PIMAC) of maize populations divergently selected for cold tolerance level is differentially dependent on the growth temperature of seedlings. Plant Cell Physiol 52:193–204

    Article  CAS  PubMed  Google Scholar 

  • Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J, Frascaroli E, Churchill GA, Inzé D, Morgante M, Pè ME (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:16

    Article  CAS  Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Foerster J, de Leon N, Kai Y, Yeh C-T, Liu S, Jeddeloh J, Schnable PS, Kaeppleer SM, Springer NM (2011) B73-Mo17 near isogenic lines (NILs) demonstrate dispersed structural variation in maize. Plant Physiol 156:1679–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chrlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 338:1533–1540

    Article  Google Scholar 

  • Frascaroli E, Casarini E, Conti S (2005) Response of maize inbred lines to a defoliation treatment inducing tolerance to cold at germination. Euphytica 145:295–303

    Article  Google Scholar 

  • Frascaroli E, Landi P (2013) Divergent selection in a maize population for germination at low temperature in controlled environment: study of the direct response, of the trait inheritance and of correlated responses in the field. Theor Appl Genet 126:733–746

    Article  PubMed  Google Scholar 

  • Frascaroli E, Landi P (2014) Inheritance of the responses to a defoliation treatment affecting cold tolerance in maize. Euphytica 197:319–329

    Article  Google Scholar 

  • Frascaroli E, Landi P (2016) Cold tolerance in field conditions, its inheritance, agronomic performance and genetic structure of maize lines divergently selected for germination at low temperature. Euphytica 209:771–788

    Article  Google Scholar 

  • Frascaroli E, Landi P (2017) Registration of Maize Inbred Line Bo23 with high cold tolerance and agronomic performance for early sowing. J Plant Regist 11:172–177

    Article  Google Scholar 

  • Frascaroli E (2018) Landi P (2018) Signatures of divergent selection for cold tolerance in maize. Euphytica 214:80. https://doi.org/10.1007/s10681-018-2163-x

    Article  CAS  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Schipprack W, Flament P, Melchinger AE, Menz M, Moreno-González J, Ouzunova M, Charcosset A, Schön CC, Moreau L (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 198:1717–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Greaves JA (1996) Improving suboptimal temperature tolerance in maize—the search for variation. J Exp Bot 47:307–323

    Article  CAS  Google Scholar 

  • Haldimann P (1998) Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant Cell Environ 21:200–208

    Article  CAS  Google Scholar 

  • Han Z, Ku L, Zhang Z, Zhang J, Guo S, Liu H, Zhao R, Ren Z, Zhang L, Su H, Dong L, Chen Y (2014) QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. PLoS ONE 9(3):e92535

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassani-Pak K, Castellote M, Esch M, Hindle M, Lysenko A, Taubert J, Rawlings C (2016) Developing integrated crop knowledge networks to advance candidate gene discovery. Appl Transl Genom 11:18–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassani-Pak K, Rawlings C (2017) Knowledge discovery in biological databases for revealing candidate genes linked to complex phenotypes. J Integr Bioinform 14(1). Retrieved 11 Apr 2018 from https://doi.org/10.1515/jib-2016-0002

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Sensitivity of maize hybrids to chilling and their combining abilities at two developmental stages. Crop Sci 37:850–856

    Article  Google Scholar 

  • Hu G, Li Z, Lu Y, Li C, Gong S, Yan S, Li G, Wang M, Ren H, Guan H, Zhang Z, Qin D, Chai M, Yu J, Li Y, Yang D, Wang T, Zhang Z (2017) Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci Rep 7 N 10840

    Google Scholar 

  • Hu S, Lübberstedt T, Zhao G, Lee M (2016) QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population. PLoS ONE 11(3):e0152795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhang J, Li W, Hu W, Duan L, Feng Y, Qiu F, Yue B (2013) Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J of Integr Plant Biol 55:735–744

    Article  CAS  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9:e1003477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  CAS  PubMed  Google Scholar 

  • Hund A, Frascaroli E, Leipner J, Jompuk C, Stamp P, Fracheboud Y (2005) Cold tolerance of the photosynthetic apparatus: pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Mol Breed 16:321–331

    Article  CAS  Google Scholar 

  • Hund A, Reimer R, Stamp P, Walter A (2012) Can we improve heterosis for root growth of maize by selecting parental inbred lines with different temperature behaviour? Phil Trans R Soc B 367:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal P, Usadel B (2016) Plant pathway databases. Plant Bioinform Methods Protoc 2016:71–87

    Article  CAS  Google Scholar 

  • Janská A, Aprile A, Zámečník J, Cattivelli L, Ovesná J (2011) Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genomics 11:307–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation-what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  PubMed  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Expl Bot 56:1153–1163

    Article  CAS  Google Scholar 

  • Jończyk M, Sobkowiak A, Trzcinska-Danielewicz J, Skoneczny M, Solecka D, Fronk J, Sowiński P (2017) Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm. Plant Mol Biol 95:279

    Article  CAS  PubMed  Google Scholar 

  • Kaniuga Z, Saczynska V, Miskiewcz E, Garstka M (1999) The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol of Zea mays genotypes differing in chilling susceptibility. J Plant Physiol 154:256–263

    Article  CAS  Google Scholar 

  • Kingston-Smith AH, Harbinson J, Foyer CH (1999) Acclimation of photosynthesis, H2O2 content, and antioxidants in Maize (Zea mays) grown at suboptimal temperatures. Plant Cell Environ 22:1071–1083

    Article  CAS  Google Scholar 

  • Kingston-Smith AH, Harbinson J, Williams J, Foyer CH (1997) Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114:1039–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollipara KP, Saab IN, Wych RD, Lauer MJ, Singletary GW (2002) Expression profiling of reciprocal maize hybrids divergent for cold germination and desiccation tolerance. Plant Physiol 129:974–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucharik CJ (2006) A multidecadal trend of earlier corn planting in the central USA. Agron J 98:1544–1550

    Article  Google Scholar 

  • Kucharik CJ (2008) Contribution of planting date trends to increased maize yields in the central United States. Agron J 100:328–336

    Article  Google Scholar 

  • Kutik J, Holá D, Koová M, Rothova O, Haisel D, Wilhelmová N, Tichá I (2004) Ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress. Photosynthetica 42:447–455

    Article  Google Scholar 

  • Landi P, Frascaroli E, Lovato A (1992) Divergent full-sib recurrent selection for germination at low temperature in a maize population. Euphytica 64:21–29

    Google Scholar 

  • Langridge P, Fleury D (2010) Making the most of ‘omics’ for crop improvement. Trends Biotechnol 29:33–40

    Article  CAS  PubMed  Google Scholar 

  • Lee EA, Staebler MA, Tollenaar M (2002) Genetic variation in physiological discriminators for cold tolerant-early autotrophic phase of maize development. Crop Sci 42:1919–1929

    Article  Google Scholar 

  • Lehermeier C, Kramer N, Bauer E, Bauland C, Camisan C, Campo L, Flament P, Melchinger AE, Menz M, Meyer N Moreau L, Moreno-González J, Ouzunova M, Pausch H, Ranc N, Schipprack W, Schönleben M, Walter H, Charcosset A, Schön CC (2014) Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genetics 198:3–16

    Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1999) Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot 42:129–139

    Article  CAS  Google Scholar 

  • Leipner J, Mayer E (2008) QTL mapping in maize seedlings reveals little relevance of C4 cycle enzymes and antioxidants for genotypic differences in chilling tolerance of photosynthesis. Maydica 53:269–277

    Google Scholar 

  • Leipner J, Stamp P (2009) Chilling stress in maize seedlings. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, Heidelberg

    Google Scholar 

  • Li P, Cao W, Fang H, Xu S, Yin S, Zhang Y, Lin D, Wang J, Chen Y, Xu C, Yang Z (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wang G, Fu J, Li L, Jia G, Ren L, Lubberstedt T, Wang G, Wang J, Gu R (2018) QTL mapping in three connected populations reveals a set of consensus genomic regions for low temperature germination ability in Zea mays L. Front Plant Sci 9:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Hu G, Liu X, Zhou Y, Li Y, Zhang X, Yuan X, Zhang Q, Yang D, Wang T, Zhang Z (2016) Transcriptome sequencing identified genes and gene ontologies associated with early freezing tolerance in maize. Front Plant Sci 7:1477

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang L, Wang J, Li C, Zeng X, Xie S, Zhang Y, Liu S, Hu S, Wang J, Lee M, Lübberstedt T, Zhao G (2017) Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Front Plant Sci 8:813

    Article  PubMed  PubMed Central  Google Scholar 

  • Louarn G, Andrieu B, Giauffret C (2010) A size-mediated effect can compensate for transient chilling stress affecting maize (Zea mays) leaf extension. New Phytol 187:106–118

    Article  PubMed  Google Scholar 

  • Louarn G, Chenu K, Fournier C, Andrieu B, Giauffret C (2008) Relative contributions of light interception and radiation use efficiency to the reduction of maize productivity under cold temperatures. Funct Plant Biol 35:885–899

    Article  PubMed  Google Scholar 

  • Lu X, Zhou X, Cao Y, Zhou M, McNeil D, Liang S, Yang C (2017) RNA-seq analysis of cold and drought desponsive transcriptomes of Zea mays ssp. mexicana L. Front. Plant Sci 8:136

    Google Scholar 

  • Makarevitch I, Eichten SR, Briskine R, Waters AJ, Danilevskaya ON, Meeley RB, Myers CL, Vaughn MW, Springer NM (2013) Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27. Plant Cell 3:780–793

    Article  CAS  Google Scholar 

  • Marocco A, Lorenzoni C, Fracheboud Y (2005) Chilling stress in maize. Maydica 50:571–580

    Google Scholar 

  • McCarty DR, Latshaw S, Wu S, Suzuki M, Hunter CT, Avigne WT, Koch KE (2013) Mu-seq: sequence-based mapping and identification of transposon induced mutations. PLoS ONE 8(10):e77172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék O, Fiehn O, Eckhardt Ä, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate revealed by canonical correlation analysis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Crossa J, Montesinos-López JC, Mota-Sanchez D, Estrada-González F, Gillberg J, Singh R, Mondal S, Juliana P (2018) Prediction of multiple-trait and multiple-environment genomic data using recommender systems. G3 (Bethesda) 8:131–147

    Google Scholar 

  • Moreno-Risoeno MA, Busch W, Benfey P (2010) Omics meets networks —using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:126–131

    Article  Google Scholar 

  • Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Google Scholar 

  • Naithani S, Preece J, D’Eustachio P, Gupta P, Amarasinghe V, Dharmawardhana PD, Wu G, Fabregat A, Elser JL, Weiser J, Keays M, Fuentes AM, Petryszak R, Stein LD, Ware D, Jaiswal P (2017) Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res. 4; 45(D1):D1029–D1039

    Google Scholar 

  • Nannas NJ, Dawe RK (2015) Genetic and genomic toolbox of Zea mays. Genetics 199:655–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47:116–122

    Article  CAS  PubMed  Google Scholar 

  • Nie G-Y, Baker NR (1991) Modifications to thylakoid composition during development of maize leaves at low growth temperature. Plant Physiol 95:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie G-Y, Robertson EJ, Freyer MJ, Leech RM, Baker NR (1995) Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant Cell Environ 18:1–12

    Article  CAS  Google Scholar 

  • Ordás B, Malvar RA, Soengas P, Ordás A, Revilla P (2004) Sugary1 inbreds to improve sugary enhander1 hybrids of sweet corn for adaptation to cold areas with short growing seasons. Maydica 49:279–288

    Google Scholar 

  • Ordás B, Padilla G, Malvar RA, Ordás A, Rodríguez VM, Revilla P (2006) Cold tolerance improvement of sugary enhancer1 hybrids of sweet corn. Maydica 51:567–574

    Google Scholar 

  • Ordás B, Revilla P, Ordás A, Malvar RA (2008) Hybrids sugary × sugary enhancer of sweet corn: a valuable option for cool environments. Sci Hortic 118:111–114

    Article  CAS  Google Scholar 

  • Ordás B, Rodríguez VM, Romay MC, Malvar RA, Ordás A, Revilla P (2010) Adaptation of super-sweet corn to cold conditions: mutant by genotype interaction. J Agric Sci 148:401–405

    Article  Google Scholar 

  • Pinhero RG, Palianth G, Yada Y, Murr DP (1999) Chloroplast membrane organization in chilling-tolerant and chilling-sensitive maize seedlings. J Plant Physiol 155:691–698

    Article  CAS  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Möller EM, Röber FK, Knaak C, Ernst K, Westhoff P, Geiger HH (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • Revilla P, Butrón A, Cartea ME, Malvar RA, Ordás A (2005) Breeding for cold tolerance. In: Ashraf M, Harris PJC (eds) Abiotic stresses. Plant resistance through breeding and molecular approaches. The Haworth Press, Inc., USA pp. 301–398

    Google Scholar 

  • Revilla P, Malvar RA, Cartea ME, Butrón A, Ordás A (2000) Inheritance of cold tolerance at emergence and during early season growth in maize. Crop Sci 40:1579–1585

    Article  Google Scholar 

  • Revilla P, Rodríguez VM, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön CC, Bauer E, Altmann T, Brunel D, Moreno-González J, Campo L, Ouzunova M, Laborde J, Álvarez Á, Ruíz de Galarreta JI, Malvar RA (2014) Cold tolerance in two large maize inbred panels adapted to European climates. Crop Sci 54:1981–1991

    Google Scholar 

  • Revilla P, Rodriguez VM, Ordas A, Rincent R, Charcosset A, Giauffre C, Melchinger AE, Schon CC, Bauer E, Altmann T, Brunel D, Moreno-Gonzalez J, Campo L, Ouzunova M, Alvarez A, Ruiz de Galarreta JI, Laborde J, Malvar RA (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodriguez VM, Moreno-Gonzales J, Melchinger AE, Bauer E, Schön C-C, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson EJ, Baker NR, Leech RM (1993) Chlorophyll thylakoid protein changes induced by low growth temperature in maize revealed by immunocytology. Plant Cell Environ 16:809–818

    Article  CAS  Google Scholar 

  • Rodríguez VM, Butrón A, Malvar RA, Ordás A, Revilla P (2008) Quantitative trait loci for cold tolerance in the maize IBM population. Int J Plant Sci 169:551–556

    Article  Google Scholar 

  • Rodríguez VM, Butrón A, Rady MOA, Soengas P, Revilla P (2014) Identification of QTLs involved in the response to cold stress in maize (Zea mays L.). Mol Breed 33:363–371

    Article  CAS  Google Scholar 

  • Rodríguez VM, Malvar RA, Butrón A, Ordás A, Revilla P (2007) Maize populations as sources of favorable alleles to improve cold tolerant hybrids. Crop Sci 47:1779–1786

    Article  Google Scholar 

  • Rodríguez VM, Romay MC, Ordás A, Revilla P (2010) Evaluation of the European Maize (Zea mays L.) germplasm under cold conditions. Gen Res Crop Evol 57:329–335

    Article  Google Scholar 

  • Rodríguez VM, Velasco P, Garrido JL, Revilla P, Ordás A, Butrón A (2013) Genetic regulation of cold-induced albinism in the maize inbred line A661. J Expl Bot 64:3657–3667

    Article  CAS  Google Scholar 

  • Rymen R, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster GTS (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185

    Article  CAS  PubMed  Google Scholar 

  • Sekhon RS, Briskine R, Hirsch CN, Myers CL, Springer NM, Buell CR, de Leon N, Kaeppler SM (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS ONE 8:e61005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sezegen B, Carena MJ (2009) Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167:237–244

    Article  Google Scholar 

  • Shan X, Li Y, Jiang Y, Jiang Z, Hao W, Yuan Y (2013) Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Rep 31:1485

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Sobkowiak A, Jończyk M, Adamczyk J, Szczepanik J, Solecka D, Kuciara I, Hetmańczyk K, Trzcinska-Danielewicz J, Grzybowski M, Skoneczny M, Fronk J, Sowiński P (2016) Molecular foundations of chilling-tolerance of modern maize. BMC Genom 17:125

    Article  CAS  Google Scholar 

  • Sobkowiak A, Jonczyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowinski P (2014) Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Plant Mol Biol 85:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strigens A, Freitag NM, Gilbert X, Grieder C, Riedelsheimer C, Schrag TA, Messmer R, Melchinger AE (2013) Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ 36:1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Takáč T (2004) The relationship of antioxidant enzymes and some physiological parameters in maize during chilling. Plant Soil Environ 50:27–32

    Article  Google Scholar 

  • Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A (2011) The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenerg Biomembr 43:611–621

    Article  CAS  PubMed  Google Scholar 

  • Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson A, Wei S, Preece J, Geniza MJ, Jiao Y, Lee YK, Wang B, Mulvaney J, Chougule K, Elser J, Al-Bader N, Kumari S, Thomason J, Kumar V, Bolser DM, Naamati G, Tapanari E, Fonseca N, Huerta L, Iqbal H, Keays M, Munoz-Pomer Fuentes A, Tang A, Fabregat A, D’Eustachio P, Weiser J, Stein LD, Petryszak R, Papatheodorou I, Kersey PJ, Lockhart P, Taylor C, Jaiswal P, Ware D (2018) Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46:D1181–D1189

    Article  CAS  PubMed  Google Scholar 

  • Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Haberer G, Mayer KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schoen CC (2016) A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 17 N 137

    Google Scholar 

  • Upadhyay J, Joshi R, Singh B, Bohra A, Vijayan R, Bhatt M, Bisht S, Wani SH (2017) Application of bioinformatics in understanding of plant stress tolerance. In: Hakeem K, Malik A, Vardar-Sukan F, Ozturk M (eds) Plant bioinformatics. Springer, Cham, pp 347–374

    Chapter  Google Scholar 

  • Verheul MJ, Picatto C, Stamp P (1996) Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. Eur J Agron 5:31–43

    Article  Google Scholar 

  • Vilhjalmsson BJ, Nordborg M (2013) The nature of confounding in genome-wide association studies. Nat Rev Genet 14:1–2

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhang Z, Fu Z, Liu Z, Hu Y, Tang J (2016) Comparative QTL analysis of maize seed artificial aging between an immortalized F2 population and its corresponding RILs. Crop J 4:30–39

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrington IJ, Kanemasu ET (1983) Corn growth response to temperature and photoperiod. I. seedling emergence tassel initiation and anthesis. Agron J 75:749–754

    Article  Google Scholar 

  • Waters A, Makarevitch I, Noshay J, Burghardt L, Hirsch CN, Hirsch CD, Springer N (2017) Natural variation for gene expression responses to abiotic stress in maize. Plant J 89:706–717

    Article  CAS  PubMed  Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation. The production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10:359–374

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wu Y, Li W, Qin X, Wang Y, Yue B (2017) Genetic mapping with testcrossing associations and F2:3 populations reveals the importance of heterosis in chilling tolerance at maize seedling stage. Scientific Reports 7 N 3232

    Google Scholar 

  • Yin Z, Qin Q, Wu F, Zhang J, Chen T, Sun Q, Zhang Y, Wang H, Deng D (2015) Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize. Euphytica 205:25–35

    Article  CAS  Google Scholar 

  • Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42:96–104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Frascaroli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frascaroli, E., Revilla, P. (2018). Genomics of Cold Tolerance in Maize. In: Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R. (eds) The Maize Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97427-9_17

Download citation

Publish with us

Policies and ethics