Skip to main content
Log in

Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

An Axiom Sugarcane100K SNP array has been designed and successfully utilized to construct the sugarcane genetic map and to identify the QTLs associated with SCYLV resistance.

Abstract

To accelerate genetic studies in sugarcane, an Axiom Sugarcane100K single-nucleotide polymorphism (SNP) array was designed and customized in this study. Target enrichment sequencing 300 sugarcane accessions selected from the world collection of sugarcane and related grass species yielded more than four million SNPs, from which a total of 31,449 single-dose (SD) SNPs and 68,648 low-dosage (33,277 SD and 35,371 double dose) SNPs from two datasets, respectively, were selected and tiled on Affymetrix Axiom SNP array. Most of selected SNPs (91.77%) were located within genic regions (12,935 genes), with an average of 7.1 SNPs/gene according to sorghum gene models. This array was used to genotype 469 sugarcane clones, including one F1 population derived from the cross between Green German and IND81-146, one selfing population derived from CP80-1827, and 11 diverse sugarcane accessions as controls. Results of genotyping revealed a high polymorphic SNP rate (77.04%) among the 469 samples. Three linkage maps were constructed by using SD SNP markers, including a genetic map for Green German with 3482 SD SNP markers spanning 3336 cM, a map for IND81-146 with 1513 SD SNP markers spanning 2615 cM, and a map for CP80-1827 with 536 SD SNP markers spanning 3651 cM. Quantitative trait loci (QTL) analysis identified 18 QTLs controlling Sugarcane yellow leaf virus resistance segregating in the two mapping populations, harboring 27 disease-resistant genes. This study demonstrated the successful development and utilization of a SNP array as an efficient genetic tool for high-throughput genotyping in highly polyploid sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data of the SNP genotyping using the Axiom Sugarcane100K SNP array for current study are available in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE128450.

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo (eo) logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  CAS  Google Scholar 

  • Aitken KS, McNeil MD, Hermann S, Bundock PC, Kilian A, Heller-Uszynska K, Henry RJ, Li J (2014) A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. BMC Genom 15:152

    Article  Google Scholar 

  • Aitken K, Farmer A, Berkman P, Muller C, Wei X, Demano E, Jackson P, Magwire M, Dietrich BaK R (2016) Generation of a 345 K sugarcane SNP chip. Int Soc Sugar Cane Technol Proc Congr 29:1165–1172

    Google Scholar 

  • Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley AR, Alda M, Jack P, Phillips AL, Edwards KJ (2017) Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J 15:390–401

    Article  CAS  Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Baker P, Jackson P, Aitken K (2010) Bayesian estimation of marker dosage in sugarcane and other autopolyploids. Theor Appl Genet 120:1653–1672

    Article  Google Scholar 

  • Balsalobre TWA, da Silva Pereira G, Margarido GRA, Gazaffi R, Barreto FZ, Anoni CO, Cardoso-Silva CB, Costa EA, Mancini MC, Hoffmann HP (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genom 18:72

    Article  Google Scholar 

  • Bassil NV, Davis TM, Zhang H, Ficklin S, Mittmann M, Webster T, Mahoney L, Wood D, Alperin ES, Rosyara UR (2015) Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genom 16:1

    Article  Google Scholar 

  • Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W (2017) Development and evaluation of a barley 50 k iSelect SNP array. Front Plant Sci 8:1792

    Article  Google Scholar 

  • Carley CAS, Coombs JJ, Douches DS, Bethke PC, Palta JP, Novy RG, Endelman JB (2017) Automated tetraploid genotype calling by hierarchical clustering. Theor Appl Genet 130:717–726

    Article  Google Scholar 

  • Chen J, Lao F, Chen X, Deng H, Liu R, He H, Fu C, Chen Y, Liu F, Li Q (2015) DNA marker transmission and linkage analysis in populations derived from a sugarcane (Saccharum spp.) × Erianthus arundinaceus hybrid. PLoS one 10:e0128865

    Article  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IA (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899

    Article  CAS  Google Scholar 

  • Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA (2015) Single nucleotide polymorphism identification in polyploids: a review, example, and recommendations. Mol Plant 8:831–846

    Article  CAS  Google Scholar 

  • Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SC, Pandey MK, Vaughn J, Abernathy B, Barkley NA, Hovav R, Burow M, Nayak SN, Chitikineni A, Isleib TG, Holbrook CC, Jackson SA, Varshney RK, Ozias-Akins P (2017) Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant 10:309–322

    Article  CAS  Google Scholar 

  • Costet L, Raboin LM, Payet M, D’Hont A, Nibouche S (2012) A major quantitative trait allele for resistance to the Sugarcane yellow leaf virus (Luteoviridae). Plant Breed 131:637–640

    Article  CAS  Google Scholar 

  • Débibakas S, Rocher S, Garsmeur O, Toubi L, Roques D, D’Hont A, Hoarau J-Y, Daugrois J-H (2014) Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet 127:1719–1732

    Article  Google Scholar 

  • Deren C (1995) Genetic base of US mainland sugarcane. Crop Sci 35:1195–1199

    Article  Google Scholar 

  • D’hont A, Paulet F, Glaszmann JC (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262

    Article  Google Scholar 

  • Edmé S, Comstock J, Miller J, Tai P (2005) Determination of DNA content and genome size in sugarcane. J Am Soc Sugar Cane Technol 25:1–16

    Google Scholar 

  • Edmé S, Glynn N, Comstock J (2006) Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity 97:366–375

    Article  Google Scholar 

  • ElSayed AI, Komor E, Boulila M, Viswanathan R, Odero DC (2015) Biology and management of sugarcane yellow leaf virus: an historical overview. Arch Virol 160:2921–2934

    Article  CAS  Google Scholar 

  • Espinoza Delgado HV, Kaye C, Hincapie M, Boukari W, Wei C, Fernandez JV, Mollov D, Comstock J, Rott P (2016) First report of Sugarcane yellow leaf virus infecting Columbus grass (Sorghum almum) in Florida. Plant Dis 100:1027

    Article  Google Scholar 

  • Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE, Buell CR, Douches DS (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7:e36347

    Article  CAS  Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Lei SC, da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  CAS  Google Scholar 

  • Garcia AAF, Mollinari M, Marconi TG, Serang OR, Silva RR, Vieira ML, Vicentini R, Costa EA, Mancini MC, Garcia MOS (2013) SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Sci Rep 3:3399

    Article  Google Scholar 

  • Garsmeur O, Charron C, Bocs S, Jouffe V, Samain S, Couloux A, Droc G, Zini C, Glaszmann JC, Van Sluys MA (2011) High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytol 189:629–642

    Article  CAS  Google Scholar 

  • Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638

    Article  Google Scholar 

  • Gerard D, Ferrão LFV, Garcia AAF, Stephens M (2018) Genotyping polyploids from messy sequencing data. Genetics 210:789–807

    Article  Google Scholar 

  • Guimarães CT, Honeycutt RJ, Sills GR, Sobral BW (1999) Genetic maps of Saccharum officinarum L. and Saccharum robustum Brandes Jew. ex grassl. Genet Mol Biol 22:125–132

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  • Hackett CA, McLean K, Bryan GJ (2013) Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One 8:e63939

    Article  Google Scholar 

  • Hackett CA, Bradshaw JE, Bryan GJ (2014) QTL mapping in autotetraploids using SNP dosage information. Theor Appl Genet 127:1885–1904

    Article  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze LL (2015) Development of a 63 k SNP array for cotton and high-density mapping of intra-and inter-specific populations of Gossypium spp. G3. Genes Genomes Genet 5:1187–1209

    Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98(2):186–194

    Article  Google Scholar 

  • Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060

    Article  CAS  Google Scholar 

  • Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, Monteros MJ, Brummer EC (2014) Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS One 9:e84329

    Article  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J plant Genomics 2012:728398

    Article  Google Scholar 

  • Margarido GR, Souza AP, Garcia AA (2007) OneMap: software for genetic mapping in outcrossing species. Hereditas 144:78–79

    Article  CAS  Google Scholar 

  • Margarido GR, Pastina MM, Souza AP, Garcia AA (2015) Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Mol Breed 35:175

    Article  CAS  Google Scholar 

  • McCouch SR, Wright MH, Tung C-W, Maron LG, McNally KL, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P (2016) Open access resources for genome-wide association mapping in rice. Nat Commun 7:10532

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Ming R, Liu S-C, Lin Y-R, Da Silva J, Wilson W, Braga D, Van Deynze A, Wenslaff T, Wu K, Moore P (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  CAS  Google Scholar 

  • Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, Shackelford I (2013) SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS One 8:e58068

    Article  CAS  Google Scholar 

  • Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577

    Article  CAS  Google Scholar 

  • Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM, Pinto LR, Souza AP, van Eeuwijk FA, Garcia AAF (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Genet 124:835–849

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551

    Article  CAS  Google Scholar 

  • Pereira GS, Garcia AAF, Margarido GR (2018) A fully automated pipeline for quantitative genotype calling from next generation sequencing data in autopolyploids. BMC Bioinform 19:398

    Article  CAS  Google Scholar 

  • Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Bidoia MAP, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172:313–327

    Article  CAS  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics 284:65–73

    Article  CAS  Google Scholar 

  • Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V (2016) Identification, characterization, and expression analysis of Cell Wall related genes in Sorghum Bicolor (L.) Moench, a food, fodder, and biofuel crop. Front Plant Sci 7:1287

    PubMed  PubMed Central  Google Scholar 

  • Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Article  CAS  Google Scholar 

  • Roach B (1969) Cytological studies in Saccharum. chromosome transmission interspecific and intergeneric crosses. In: International society of sugar cane technologists proceedings and congress

  • Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, Varshney RK (2017) Development and evaluation of high density SNP array (Axiom® CicerSNP Array) for high resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol J 16:890–901

    Article  Google Scholar 

  • Santos FR, Pinto LR, Carlini-Garcia LA, Gazaffi R, Mancini MC, Gonçalves BS, Medeiros CN, Perecin D, Garcia AA, Souza AP (2015) Marker-trait association and epistasis for brown rust resistance in sugarcane. Euphytica 203:533–547

    Article  CAS  Google Scholar 

  • Schenck S (1997) Use of a tissue blot immunoassay to determine the distribution of sugarcane yellow leaf virus in Hawaii. Sugar cane 4:5–8

    Google Scholar 

  • Seeb J, Carvalho G, Hauser L, Naish K, Roberts S, Seeb L (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 11:1–8

    Article  Google Scholar 

  • Serang O, Mollinari M, Garcia AAF (2012) Efficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids. PLoS One 7:e30906

    Article  CAS  Google Scholar 

  • Song J, Yang X, Resende MF Jr, Neves LG, Todd J, Zhang J, Comstock JC, Wang J (2016) Natural allelic variations in highly polyploidy Saccharum complex. Front Plant Sci 7:804

    PubMed  PubMed Central  Google Scholar 

  • Tinker NA, Chao S, Lazo GR, Oliver RE, Huang Y-F, Poland JA, Jellen EN, Maughan PJ, Kilian A, Jackson EW (2014) A SNP genotyping array for hexaploid oat. Plant Genome 7:1–8

    Article  CAS  Google Scholar 

  • Uitdewilligen JGML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8:e62355

    Article  CAS  Google Scholar 

  • van Geest G, Bourke PM, Voorrips RE, Marasek-Ciolakowska A, Liao YL, Post A, van Meeteren U, Visser RGF, Maliepaard C, Arens P (2017) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527–2541

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen 33:10.1371

  • Voorrips RE, Gort G, Vosman B (2011) Genotype calling in tetraploid species from bi-allelic marker data using mixture models. BMC Bioinform 12:172

    Article  Google Scholar 

  • Vos PG, Uitdewilligen JG, Voorrips RE, Visser RG, van Eck HJ (2015) Development and analysis of a 20 K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128:2387–2401

    Article  CAS  Google Scholar 

  • Wang S, Basten C, Zeng Z (2006) Win QTL cartographer 2.5. Raleigh, USA: Department of Statistics, North Carolina State University, Raleigh

  • Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genom 11:261

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing C, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  Google Scholar 

  • Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:20728

    Article  CAS  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  CAS  Google Scholar 

  • Xu C, Ren Y, Jian Y, Guo Z, Zhang Y, Xie C, Fu J, Wang H, Wang G, Xu Y (2017) Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Mol Breed 37:20

    Article  Google Scholar 

  • Yang X, Song J, You Q, Paudel DR, Zhang J, Wang J (2017a) Mining sequence variations in representative polyploid sugarcane germplasm accessions. BMC Genom 18:594

    Article  Google Scholar 

  • Yang X, Sood S, Glynn N, Islam MS, Comstock J, Wang J (2017b) Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance. Mol Breed 37:116

    Article  Google Scholar 

  • Yang X, Song J, Todd J, Peng Z, Paudel D, Luo Z, Ma X, You Q, Hanson E, Zhao Z (2018) Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a ‘sweet’crop with ‘bitter’genomes. Plant Biotechnol J 17:1–11

    Google Scholar 

  • You Q, Xu L, Zheng Y, Que Y (2013) Genetic diversity analysis of sugarcane parents in Chinese breeding programmes using gSSR markers. Sci World J 2013:613062

    Google Scholar 

  • You Q, Yang X, Peng Z, Xu L, Wang J (2018) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 9:104

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Florida Sugarcane League, United States Department of Agriculture - Agricultural Research Service CRIS projects 6030-21000-005-00D, USDA National Institute of Food and Agriculture, Hatch Project 1011664, and the Scientific Research Foundation of Graduate School at the Fujian Agriculture and Forestry University, Chinese Government Scholarship (CSC No. 201608350089), and The Earmarked Fund for Agriculture Research (CARS-17). We appreciate the technical supports from Zifan Zhao and Erik Hanson in Agronomy Department, University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Xu or Jianping Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Antonio Augusto Franco Garcia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Yang, X., Peng, Z. et al. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theor Appl Genet 132, 2829–2845 (2019). https://doi.org/10.1007/s00122-019-03391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03391-4

Navigation