Skip to main content
Log in

A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A half-diallel population involving five elite grapevine cultivars was generated and genotyped by GBS, and highly-informative segregation data was used to construct a high-density genetic map for Vitis vinifera L.

Abstract

Grapevine is one of the most relevant fruit crops in the world. Deeper genetic knowledge could assist modern grapevine breeding programs to develop new wine grape varieties able to face climate change effects. To assist in the rapid identification of markers for crop yield components, grape quality traits and adaptation potential, we generated a large Vitis vinifera L. population (N = 624) by crossing five red wine cultivars in a half-diallel scheme, which was subsequently sequenced by an efficient GBS procedure. A high number of fully informative genetic variants was detected using a novel mapping approach capable of reconstructing local haplotypes from adjacent biallelic SNPs, which were subsequently used to construct the densest consensus genetic map available for the cultivated grapevine to date. This 1378.3-cM map integrates 10 bi-parental consensus maps and orders 4437 markers in 3353 unique positions on 19 chromosomes. Markers are well distributed all along the grapevine reference genome, covering up to 98.8% of its genomic sequence. Additionally, a good agreement was observed between genetic and physical orders, adding confidence in the quality of this map. Collectively, our results pave the way for future genetic studies (such as fine QTL mapping) aimed to understand the complex relationship between genotypic and phenotypic variation in the cultivated grapevine. In addition, the method used (which efficiently delivers a high number of fully informative markers) could be of interest to other outbred organisms, notably perennial fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahfock D, Wood I, Stephen S, Cavanagh CR, Huang BE (2014) Characterizing uncertainty in high-density maps from multiparental populations. Genetics 198:117–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V, Genna B, Péros JP, This P, Boursiquot JM (2013) Genetic structure in cultivated grapevine is linked to geography and human selection. BMC Plant Biol. 13:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Resich B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84

    Article  CAS  PubMed  Google Scholar 

  • Barba P, Lillis J, Luce RS, Travdadon R, Osier M, Baumgartner K, Wilcox WF, Reisch BI, Cadle-Davidson L (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Charcosset A, Veyrieras JB, Gallais A, Moreau L (2008) Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize. Euphytica 161:71–84

    Article  Google Scholar 

  • Bodenes C, Chancerel E, Ehrenmann F, Kremer A, Plomion C (2016) High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Res 23:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Wu H, Sen S, Chuchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585

    Article  CAS  PubMed  Google Scholar 

  • Canaguier A et al (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreño I et al. (2015) Quantitative genetic analysis of berry firmness in table grape (Vitis vinifera L.). Tree Genet Genom 11:818

  • Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:38

    Article  CAS  Google Scholar 

  • Cilas C, Bouharmont P, Boccara M, Eskes AB, Baradat P (1998) Prediction of genetic value for coffee production in Coffea arabica from a half-diallel with lines and hybrids. Euphytica 104:49–59

    Article  Google Scholar 

  • Clark MD et al (2018) Quantitative trait loci identified for foliar phylloxera resistance in a hybrid grape population. Aust J Grape Wine Res 24:292–300

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Correa J et al (2016) New stable QTLs for berry firmness in table grapes. Am J Enol Vitic 67:21–217

    Article  CAS  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biol 8:38

  • Coupel-Ledru A et al (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci USA 113:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Linge C, Antanaviciute L, Abdelghafar A, Arús P, Bassi D, Rossini L, Ficklin S, Gasic K (2018) High-density multi-population consensus genetic linkage map for peach. PLoS One 13(11):e0207724

    Article  CAS  Google Scholar 

  • Danecek P et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) Carthagene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  CAS  PubMed  Google Scholar 

  • de Koning D-J, McIntyre LM (2017) Back to the future: multiparent populations provide the key to unlocking the genetic basis of complex traits. Genetics 206:527–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Deschamps S, llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Pierro EA et al (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic Res 3:16057s

    Article  CAS  Google Scholar 

  • Doligez A et al (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    Article  CAS  PubMed  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine Vitis vinifera L. Mol Breed 18:109–125

    Article  CAS  Google Scholar 

  • Doligez A et al (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:1–16

    Article  Google Scholar 

  • Dong H et al (2018) Genetic mapping of biomass yield in three interconnected Miscanthus populations. GCB Bioenergy 10:165–185

    Article  CAS  Google Scholar 

  • Edae EA, Olivera PD, Jin Y, Rouse MN (2017) Genotyping-by-Sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat G3. Bethesda 7:1551–1561

    CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB, Plomion C (2014) LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624

    Article  CAS  PubMed  Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes Vitis vinifera. Theor Appl Genet 111:658–664

    Article  CAS  PubMed  Google Scholar 

  • Fierst JL (2015) Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Front Genet 6:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fodor A et al (2014) Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine. Plos One 9:e110436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood MJ, Wei C-L, Liu ET, Ruan Y (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay G, Dahan Y, Izhaki Y, Faigenboim A, Ben-Ari G, Elkind Y, Flaishman MA (2018) High-resolution genetic linkage map of European pear (Pyrus communis) and QTL fine-mapping of vegetative budbreak time. BMC Plant Biol 18:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus-grandis and Eucalyptus-urophylla using a pseudo-testcross—mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Article  Google Scholar 

  • Guo DL, Zhao HL, Li Q, Zhang GH, Jiang JF, Liu CH, Yu YH (2019) Genome-wide association study of berry related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic Res 6:11

  • Hanly S et al (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105:1087–1096

    Article  CAS  Google Scholar 

  • Harushima Y et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill T et al (2015) Ultra-high density, transcript-based genetic maps of pepper define recombination in the genome and synteny among related species G3. Bethesda 5:2341–2355

    CAS  Google Scholar 

  • Houel C et al. (2015) Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biol 15:205

  • Huber DA, White TL, Little RC, Hodge GR (1992) Ordinary least squares estimation of general and specic combining ability from half-diallel mating designs. Silvae Genet 41:263–273

    Google Scholar 

  • Hyma KE et al (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine. PLoS One 10:e0134880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Cassava Genetic Map Consortium (2015) High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations G3. Bethesda 5:133–144

    Google Scholar 

  • Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jestin C, Bardol N, Lodé M, Duffé P, Domin C, Vallée P, Mangin B, Manzanares-Dauleux MJ, Delourme R (2015) Connected populations for detecting quantitative resistance factors to phoma stem canker in oilseed rape Brassica napus L. Mol Breed 35:167

    Article  Google Scholar 

  • Ji F et al (2018) Construction of a SNP-based high-density genetic map using genotyping by sequencing (GBS) and QTL analysis of nut traits in Chinese chestnut (Castanea mollissima Blume). Front Plant Sci 9:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim C, Guo H, Kong W, Chandnani R, Shuang L-S, Paterson AH (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22

    Article  CAS  PubMed  Google Scholar 

  • Köster J, Rahmann S (2012) Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28:2520–2522

    Article  CAS  PubMed  Google Scholar 

  • Lacombe T, Boursiquot J-M, Laucou V, Di Vecchi Staraz M, Péros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414

    Article  PubMed  Google Scholar 

  • Ladejobi O et al (2016) Maximizing the potential of multi-parental crop populations. Appl Transl Genom 11:9–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Clerc V, Marques S, Suel A, Huet S, Hamama L, Voisine L, Auperpin E, Jourdan M, Barrot L, Prieur R, Briard M (2015) QTL mapping of carrot resistance to leaf blight with connected populations: stability across years and consequences for breeding. Theor Appl Genet 128:2177–2187

    Article  PubMed  Google Scholar 

  • Li H et al (2009) The sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv 1303.3997

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One 9:e98855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • Matheson A, Spencer DJ, Magnussen D (1994) Optimum age for selection in Pinus radiata using basal area under bark for age:age correlation. Silvae Genet 43:352–357

    Google Scholar 

  • McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner SG, Maccaferri M, Huang BE, Mantovani P, Massi A, Frascaroli E, Tuberosa R, Salvi S (2016) A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnology Journal 14:735–748

    Article  CAS  PubMed  Google Scholar 

  • Muranty H (1996) Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76:156–164

    Article  Google Scholar 

  • Pascual L et al (2016) Dissecting quantitative trait variation in the resequencing era:complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130

    Article  CAS  PubMed  Google Scholar 

  • Paulo M-J, Boer M, Huang X, Koornneef M, Van Eeuwijk F (2008) A mixed model QTL analysis for a complex cross population consisting of a half diallel of two-way hybrids in Arabidopsis thaliana: analysis of simulated data. Euphytica 161:107–114

    Article  Google Scholar 

  • Pauly L, Flajoulot S, Garon J, Julier B, Béguier V, Barre P (2012) Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.) Theor Appl Genet 124:1139–1153

  • Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 10:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelsy F, Dumas V, Bévilacqua L, Hockquigny S, Merdinglu D (2015) Chromosome replacement and deletion lead to clonal polymorphism of berry color in grapevine. PLOS Genet 11:e1005081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierozzi NI, Moura MF (2016) Karyotype analysis in grapevines. Rev Bras Frutic 38:213–221

    Article  Google Scholar 

  • Plomion C et al (2014) Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genom 15:171

    Article  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-Sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastas P, Paulin L, Hanski I, Lehtonen R, Auvinen P (2013) Lep-MAP: fast and accurate linkage map construction for large SNP datasets. Bioinformatics 29:3128–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter R, Gabriel D, Rist F, Topfer R, Zyprian E (2018) Identification of co-located QTLs and genomic regions affecting grapevine cluster architecture. Theor Appl Genet 1:19. https://doi.org/10.1007/s00122-018-3269-1

    Article  CAS  Google Scholar 

  • Ritter E, Salamini F (1996) The calculation of recombination frequencies in crosses of allogamous plant species with applicatins to linkage mapping. Genet Res 67:55–65

    Article  CAS  Google Scholar 

  • Saptoka S, Chen L-L, Yang S, Hyma KE, Cadle-Davidson L, Hwang C-F (2019) Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’. Theor Appl Genet 132:137–147

    Article  CAS  Google Scholar 

  • Schlautman B et al (2017) Construction of a high-density American cranberry (Vaccinium macrocarpon Ait.) composite map using genotyping-by-sequencing for multi-pedigree linkage mapping G3. Bethesda 7:1177–1189

    CAS  Google Scholar 

  • Senthilvel S, Ghosh A, Shaik M, Shaw RK, Bagali PG (2019) Development and validation of an SNP genotyping array and construction of a high-density linkage map in castor. Sci Rep 9:3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR (2018) SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS One 13:e0193121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stephan W, Langley CH (1998) DNA polymorphism in Lycopersicon and crossing-over per physical length. Genetics 150:1585–1593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teh SL, Fresnedo-Ramírez J, Clark MD, Gadoury D, Sun Q, Cadle-Davidson L, Luby JJ (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1

    Article  CAS  PubMed  Google Scholar 

  • Tello J, Torres-Pérez R, Grimplet J, Carbonell-Bejerano P, Martínez-Zapater JM, Ibáñez J (2015) Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biol 15:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tello J, Torres-Pérez R, Grimplet J, Ibáñez J (2016) Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129:227–242

    Article  CAS  PubMed  Google Scholar 

  • Tisné S, Pomiès V, Riou V, Syahputra I, Cochard B, Denis M (2017) Identification of Ganoderma disease resistance loci using natural field infection of an oil palm multiparental population G3. Bethesda 7:1683–1692

    Google Scholar 

  • Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. Fruit, Veg Cereal Sci Biotech 5:79–100

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4.0, Software for the calculation of genetic linkage maps in experimental populations.

  • Vezzulli S et al (2008) A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117:499–511

    Article  CAS  PubMed  Google Scholar 

  • Visser T (1976) A comparison of apple and pear seedlings with reference to the juvenile period. II. Mode of inheritance. Euphytica 25:339–342

    Google Scholar 

  • Wang S et al (2015) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2017) Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing. PLoS One 12:e0171728

    Article  CAS  Google Scholar 

  • Welter L, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian E (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374

    Article  CAS  Google Scholar 

  • Wenzl P et al (2016) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  CAS  Google Scholar 

  • Westbrook JW et al (2015) A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinus taeda G3. Bethesda 5:1685–1694

    Google Scholar 

  • Wu HX, Matheson AC (2000) Analysis of half-diallel mating designs with missing crosses: Theory and SAS program for testing and estimating GCA and SCA fixed effects. Silvae Genet 49:130–137

    Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinform 8:381–394

    Article  PubMed  Google Scholar 

  • Xu Y, Li P, Yang Z, Xu C (2017) Genetic mapping of quantitative trait loci in crops. Crop J 5:175–184

    Article  Google Scholar 

  • Yobrégat O (2018) Introduction to resistant vine types: a brief history and overview of the situation. OENO One 52:241–246

    Article  Google Scholar 

  • Zhu J, Guo Y, Su K, Liu Z, Ren Z, Li K, Guo X (2018) Construction of a highly saturated genetic map for Vitis by next-generation restriction site-associated DNA sequencing. BMC Plant Biol 18:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contribution statement

PT, JPP and AD conceived the idea of the study and contributed to funding acquisition; CR, TP and AD obtained and/or assisted in the maintenance of the plant material used in this work; CR and AW carried out the genotyping of the plant material; SS defined GBS protocols; HC and GS defined bioinformatics pipelines for GBS data analysis; JT, CR and VL performed bioinformatics analysis of GBS data; JT, TF and AD defined scripts for genetic mapping; JT analysed data and wrote the manuscript with the inputs from all authors, who approved the final version of the manuscript; AD coordinated this work.

Acknowledgements

JT was supported by the Agreenskills + Fellowship Programme, which has received funding from the EU's Seventh Framework Programme under grant agreement No. FP7-609398. This work was partially supported by the Géno-Vigne® Technological Unit, the Agropolis Fondation (under the ARCAD project No 0900–001), and by the CIRAD - UMR AGAP HPC Data Center of the South Green Bioinformatics platform (https://www.southgreen.fr/). Authors acknowledge Thierry Lacombe for his help with the French Network of Grapevine Repositories Database, and the staff of the INRA Vassal grapevine collection for their help with the crosses and the maintenance of the plantlets before being transferred to the Domaine du Chapitre Experimental Vineyard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Doligez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were carried out.

Availability of data and materials

Information on the plant material used in this work can be retrieved from the French Network of Grapevine Repositories Database (https://bioweb.supagro.inra.fr/collections_vigne). The raw sequence data have been deposited in the National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/bioproject/508587). Datasets are available in the Portail Data INRA public repository (https://doi.org/10.15454/99SLGP). All other relevant information is specified in the manuscript or included as Additional Files.

Additional information

Communicated by Reinhard Toepfer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tello, J., Roux, C., Chouiki, H. et al. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. Theor Appl Genet 132, 2237–2252 (2019). https://doi.org/10.1007/s00122-019-03351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03351-y

Navigation