Skip to main content
Log in

Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message A single recessive gene for complete resistance to powdery mildew and a major-effect QTL for partial resistance to downy mildew were co-localized in a Cucumis hystrix introgression line of cucumber.

Abstract

Downy mildew (DM) and powdery mildew (PM) are two major foliar diseases in cucumber. DM resistance (DMR) and PM resistance (PMR) may share common components; however, the genetic relationship between them remains unclear. IL52, a Cucumis hystrix introgression line of cucumber which has been reported to possess DMR, was recently identified to exhibit PMR as well. In this study, a single recessive gene pm for PMR was mapped to an approximately 468-kb region on chromosome 5 with 155 recombinant inbred lines (RILs) and 193 F2 plants derived from the cross between a susceptible line ‘changchunmici’ and IL52. Interestingly, pm was co-localized with the major-effect DMR QTL dm5.2 confirmed by combining linkage analysis and BSA-seq, which was consistent with the observed linkage of DMR and PMR in IL52. Further, phenotype–genotype correlation analysis of DMR and PMR in the RILs indicated that the co-localized locus pm/dm5.2 confers complete resistance to PM and partial resistance to DM. Seven candidate genes for DMR were identified within dm5.2 by BSA-seq analysis, of which Csa5M622800.1, Csa5M622830.1 and Csa5M623490.1 were also the same candidate genes for PMR. A single nucleotide polymorphism that is present in the 3ˊ untranslated region (3′UTR) of Csa5M622830.1 co-segregated perfectly with PMR. The GATA transcriptional factor gene Csa5M622830.1 may be a likely candidate gene for DMR and PMR. This study has provided a clear evidence for the relationship between DMR and PMR in IL52 and sheds new light on the potential value of IL52 for cucumber DMR and PMR breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 119:313–327

    Google Scholar 

  • An Y, Han X, Tang X et al (2014) Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels. Plant Cell Tissue Organ Cult 30:174–178

    Google Scholar 

  • Bai Z, Yuan X, Cai R et al (2008) QTL analysis of downy mildew resistance in cucumber. Prog Nat Sci 18:706–710 (in Chinese)

    CAS  Google Scholar 

  • Berg JA, Appiano M, Martínez MS et al (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Zhang Y, Signorelli T et al (2005) Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44:680–692

    Article  CAS  PubMed  Google Scholar 

  • Caldwell D, Chan E, de Vries J et al (2011) Methods and compositions for identifying downy mildew resistant cucumber plants. United States patent US 2011/0126309 A1

  • Cao Q (2006) Research on cucumber alien translocation line possessing resistance to downy mildew and its application in cucumber breeding. Dissertation, Nanjing Agricultural University (in Chinese)

  • Cavagnaro PF, Senalik DA, Yang L et al (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569

    Article  CAS  Google Scholar 

  • Chen J, Kirkbride J (2000) A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319

    Article  Google Scholar 

  • Chen J, Staub J, Tashiro Y et al (1997) Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96:413–419

    Article  Google Scholar 

  • Chen J, Luo X, Staub J et al (2003) An allotriploid derived from a amphidiploid × diploid. Euphytica 131:235–241

    Article  CAS  Google Scholar 

  • Cockerham CC (1983) Covariances of relatives from self-fertilization. Crop Sci 23:1177–1180

    Article  Google Scholar 

  • Das S, Upadhyaya H, Bajaj D et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruiter W, Hofstede R, de Vries J, van den Heuvel H (2008) Combining QTL for resistance to CYSDV and powdery mildew in a single cucumber line. In: Proceedings of 9th EUCARPIA meeting on genetics and breeding of Cucurbitaceae (Pitrat M, ed), INRA, Avignon (France), 21–24 May, pp 181–188

  • Dijkhuizen A, Kennard WC, Havey MJ et al (1996) RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90:79–87

    Google Scholar 

  • Ding G, Qin Z, Zhou X et al (2007) RAPD and SCAR markers linked to downy mildew resistance genes in cucumber. Acta Bot Boreali-Occident Sin 27:1747–1751 (in Chinese)

    CAS  Google Scholar 

  • Epps W, Barnes W (1952) The increased susceptibility of the Palmetto cucumber to downy mildew in South Carolina. Plant Dis Rep 36:14–15

    Google Scholar 

  • Evangelisti E, Rey T, Schornack S (2014) Cross-interference of plant development and plant-microbe interactions. Curr Opin Plant Biol 20:118–126

    Article  CAS  PubMed  Google Scholar 

  • Fukino N, Yoshioka Y, Sugiyama M et al (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed 32:267–277

    Article  CAS  Google Scholar 

  • Gao D, Appiano M, Huibers RP et al (2015) Natural loss-of-function mutation of EDR1 conferring resistance to tomato powdery mildew in Arabidopsis thaliana accession C24. Mol Plant Pathol 16:71–82

    Article  CAS  PubMed  Google Scholar 

  • He X, Li Y, Pandey S et al (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 129:819–829

    Article  CAS  Google Scholar 

  • He H, Zhu S, Jiang Z et al (2016) Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat. Theor Appl Genet 129:819–829

    Article  CAS  PubMed  Google Scholar 

  • Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol 46:337–350

    Article  Google Scholar 

  • Huibers RP, Loonen AEHM, Gao D et al (2013) Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS ONE 8:e67467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342

    Article  PubMed  Google Scholar 

  • Jenkins SF, Wehner TC (1983) A system for the measurement of foliar diseases of cucumber. Cucurbit Genet Coop Rep 6:10–12

    Google Scholar 

  • Kooistra E (1968) Powdery mildew resistance in cucumber. Euphytica 17:236–244

    Google Scholar 

  • Kozma P, Dula T (2003) Inheritance of resistance to downy mildew and powdery mildew of hybrid family Muscadinia × V. vinifera × V. amurensis × Franco-American hybrid. Acta Hortic 603:457–463

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yang L, Pathak M et al (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    Article  PubMed  Google Scholar 

  • Liu L, Yuan X, Cai R et al (2008) Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J Phytopathol 156:691–697

    Article  Google Scholar 

  • Lu H, Lin T, Klein J et al (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245

    Article  PubMed  Google Scholar 

  • Merdinoglu D, Wiedemann-Merdinoglu S, Coste P et al (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie J, He H, Peng J et al (2015a) Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35:7

    Article  CAS  Google Scholar 

  • Nie J, Wang Y, He H et al (2015b) Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front. Plant Sci 6:1155

    Google Scholar 

  • Olaya G, Kuhn P, Hert A (2009) Fungicide resistance in cucurbit downy mildew. Phytopathology 9:S171

    Google Scholar 

  • Olczak-Woltman H, Marcinkowska J, Niemirowicz-Szczytt K (2011) The genetic basis of resistance to downy mildew in Cucumis spp.—latest developments and prospects. J Appl Genet 52:249–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey M, Khan A, Singh V et al (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang X, Zhou X, Wan H et al (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543

    Article  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García A, Romero D, FernÁndez-OrtuÑo D et al (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10:153–160

    Article  PubMed  Google Scholar 

  • Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Roque A, Adsuar J (1939) New cucumber varieties resistant to the downy mildew. In: Annual report agricultural experiment station of Puerto Rico fiscal year 1937–1938, pp 45–46

  • Sakata Y, Kubo N, Morishita M et al (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250

    Article  CAS  PubMed  Google Scholar 

  • Savory EA, Granke LL, Quesada-Ocampo LM et al (2011) The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol 12:217–226

    Article  PubMed  Google Scholar 

  • Singh V, Khan A, Saxena R et al (2016a) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Khan A, Jaganathan D et al (2016b) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith P (1948) Powdery mildew resistance in cucumber. Phytopathology 38:1027–1028

    Google Scholar 

  • Szczechura W, Staniaszek M, Klosinska U, Kozik E (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostovzev in cucumber. Russ J Genet 51:974–979

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Van Damme M, Zeilmaker T, Elberse J et al (2009) Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell 21:2179–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen JW (2006) Joinmap 4.0. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wagenigen, p 63

    Google Scholar 

  • Van Vliet GJA, Meysing WD (1974) Inheritance of resistance to Pseudoperonospora cubensis Rost. in cucumber (Cucumis sativus L.). Euphytica 23:251–255

    Article  Google Scholar 

  • Van Vliet GJA, Meysing WD (1977) Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica 26:793–796

    Article  Google Scholar 

  • VandenLangenberg KM (2015) Studies on downy mildew resistance in cucumber (Cucumis sativus L.). Dissertation, North Carolina State University

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan H, Yuan W, Bo K et al (2013) Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang Y, VandenLangenberg KM, Wehner TC et al (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu Z, Zhang Y et al (2018a) Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). Theor Appl Genet 131:673–684

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, VandenLangenberg K, Wen C et al (2018b) QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131:597–611

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Jian H, Lu K et al (2016a) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14:1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Fu W, Wang Y et al (2016b) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6:27496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng Y, Johnson S, Staub JE et al (2010) An extended microsatellite genetic map of cucumber, Cucumis sativus L. HortScience 45:880–886

    Google Scholar 

  • Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 5:e1000942

    Article  CAS  Google Scholar 

  • Win K, Vegas J, Zhang C et al (2017) QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 130:199–211

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Yu T, Xu R et al (2016) Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet 129:507–516

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Shi T, Wang F et al (2017) Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hortic Res 4:17053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Koo DH, Li Y et al (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li D, Li Y et al (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    Article  CAS  Google Scholar 

  • Zhang H, Wang Z, Mao A et al (2008) SSR markers linked to the resistant gene of cucumber powdery mildew. Acta Agric Boreali-Sin 23:77–80 (in Chinese)

    Google Scholar 

  • Zhang S, Liu M, Miao H et al (2011) QTL mapping of resistance genes to powdery mildew in cucumber. Sci Agric Sin 44:3584–3593

    Google Scholar 

  • Zhang S, Liu M, Miao H et al (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Sun S, Li P et al (2018) Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet 131:525–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Martin Kagiki Njogu (Department of Horticulture, College of Horticulture, Nanjing Agricultural University, Nanjing, China) for critical reading of the manuscript. This research was supported by National Natural Science Foundation of China (Key Program, No. 31430075), Special Fund for Agro-Scientific Research in the Public Interest (No. 201403032), National Key Research and Development Program of China (2016YFD0101705-5), National Key Research and Development Program of China (2016YFD0100204-25), National Natural Science Foundation of China (No. 31672168), Independent Innovation of Agricultural Science and Technology of Jiangsu Province (CX(17)3016), Fundamental Research Funds for the Central Universities (No. KYZ201828).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Li or Jinfeng Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The experiments were performed in accordance with all relevant Chinese laws.

Additional information

Communicated by Michael J. Havey.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, X., Zhu, W. et al. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theor Appl Genet 131, 2229–2243 (2018). https://doi.org/10.1007/s00122-018-3150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3150-2

Navigation