Skip to main content

Advertisement

Log in

Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

New QTL for Septoria tritici blotch detected in hexapoid spring wheat under field conditions across diverse environments.

Abstract

Septoria tritici blotch caused by the ascomycete fungus Zymoseptoria tritici presents a serious and consistent challenge to global wheat production. In particular the augmented use of soil management practices that leave large amounts of wheat stubble on the soil surface and global warming increases the chance of Septoria tritici blotch epidemics to emerge more frequently including in developing countries. Two recombinant inbred line populations developed from a cross between the susceptible Moroccan spring bread wheat variety ‘NASMA’ and the CIMMYT resistant lines, ‘IAS20*5/H567.71’ and ‘RPB709.71/COC’ were used to study the genetics and map adult-plant resistance to Septoria tritici blotch under field conditions in different environments. Resistance to Septoria tritici blotch in both populations was quantitative and overall, five across environment consistent resistance loci on chromosomes 1BS, 3AL, 5AL and 7AS were detected in the two populations. The QTL on chromosome 1BS and 7AS are likely to be allelic with the known Septoria tritici blotch genes Stb3 and Stb11. All identified QTL were additive and explained between 4 and 27 % of the phenotypic variation. Epistatic interaction was not observed. Low cost KASP assays were developed as flanking markers for all five QTL that will facilitate molecular breeding. Our study represents the first mapping effort under field conditions utilizing two spring bread wheat resistant sources evaluated over multiple environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology 93:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Yang X, Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, Goodwin SB (2004a) Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB (2004b) Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology 94:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (1994) Zmap—a QTL cartographer. In: Smith C, Gavora JS, Benkel J, Chesnais B, Fairfull W, Gibson JP, Kennedy BW, Burnsid EB (eds) Proceedings of the 5th world congress on genetics applied to livestock production: computing strategies and software, vol 22. Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, pp 65–66

  • Bekele A, Firdisa E, Kebede T, Solomon G (2011) Screening wheat germplasm for Septoria resistance in Ethiopia. In: Duveiller E, Singh PK et al. (eds) 2001. 8th international symposium on mycosphaerella and stagonospora diseases of cereals. Book of Abstracts. Mexico City, Mexico, pp 94

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664  

    Article  Google Scholar 

  • Bernardo R (2014) Genome wide selection when major genes are known. Crop Sci 54:68–75

    Article  Google Scholar 

  • Brading PA, Verstappen EC, Kema GH, Brown JK (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92:439–445

    Article  PubMed  Google Scholar 

  • Chartrain L, Berry ST, Brown JK (2005a) Resistance of wheat line KavKaz-K4500 L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95:664–671

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F, Brown JK (2005b) Genetics of resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theor Appl Genet 110:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Sourdille P, Bernard M, Brown JKM (2009) Identification and location of Stb9, a gene for resistance to Septoria tritici blotch in wheat cultivars Courtot and Tonic. Plant Pathol 58:547–555

    Article  CAS  Google Scholar 

  • CIMMYT (2015) Wheat Atlas (http://www.wheatatlas.org/varieties). Accessed 8 Apr 2015

  • Cools HJ, Hawkins NJ, Fraaije BA (2013) Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol 62:36–42

    Article  CAS  Google Scholar 

  • Cowger C, Hoffer ME, Mundt CC (2000) Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathol 49:445–451

    Article  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases and potential epidemics. Euphytica 157:417–430

    Article  Google Scholar 

  • Eriksen L, Borum F, Jahoor A (2003) Inheritance and localization of resistance to Mycosphaerella graminicola causing Septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet 107:515–527

    Article  CAS  PubMed  Google Scholar 

  • Eyal Z, Sharen AL, Prescott JM, van Ginkel M (1987) The Septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Goodwin SB (2012) Resistance in wheat to Septoria diseases caused by Mycosphaerella graminicola (Septoria tritici) and Phaeosphaeria (Stagonospora) nodorum. In: Sharma I (ed) Disease resistance in wheat. CABI, Cambridge, pp 151–159

    Chapter  Google Scholar 

  • Goodwin SB, Cavaletto JR, Hale IL, Thompson I, Xu SS, Adhikari TB, Dubcovsky J (2014) A new map location of gene Stb3 for resistance to Septoria tritici blotch in wheat. Crop Sci. doi:10.2135/cropsci2013.11.0766

    Google Scholar 

  • Goudemand E, Laurent V, Duchalais L, Tabib Ghaffary MS, Kema GHJ, Lonnet P, Margalé E, Robert O (2013) Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol Breed. doi:10.1007/s11032-013-9890-4

    Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315–323

    Article  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Jlibene M, Gustafson JP, Rajaram S (1994) Inheritance of resistance to Mycosphaerella graminicola in hexaploid wheat. Plant Breed 112:301–310

    Article  Google Scholar 

  • Jlibene M, Mazouz H, Farih A (1995) Host–pathogen interaction of wheat (Triticum aestivum) and Septoria tritici in Morocco. In: Gilchrist SL, van Ginkel M, McNab, A, Kema GHJ (eds) 1995. Proceedings of a Septoria tritici Workshop 20–24 September 1993, Mexico, D.F.: CIMMYT, p 34–40

  • Kelm C, Ghaffary SMT, Bruelheide H, Röder MS, Miersch S, Weber WE, Kema GHK, Saal B (2012) The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitär × Mazurka. Mol Breed 29:813–830

    Article  Google Scholar 

  • Kema GHJ, van Silfhout CH (1997) Genetic variation for virulence and resistance in the wheat–Mycosphaerella graminicola pathosystem. III. Comparative seedling and adult plant experiments. Phytopathology 87:266–272

    Article  CAS  PubMed  Google Scholar 

  • Kema GHJ, Verstappen ECP, Todorova M, Waalwijk C (1996) Successful crosses and molecular tetrad and progeny analyses demonstrate heterothallism in Mycosphaerella graminicola. Curr Genet 30:251–258

    Article  CAS  PubMed  Google Scholar 

  • Kosellek C, Pillen K, Nelson JC, Weber EW, Saal B (2013) Inheritance of field resistance to Septoria tritici blotch in the wheat doubled-haploid population Solitär × Mazurka. Euphytica 194:161–176

    Article  CAS  Google Scholar 

  • Liu Y, Zhang L, Thompson IA, Goodwin SB, Ohm HW (2013) Molecular mapping re-locates the Stb2 gene for resistance to Septoria tritici blotch derived from cultivar Veranapolis on wheat chromosome 1BS. Euphytica 190:145–156

    Article  CAS  Google Scholar 

  • McCartney CA, Brule-Babel AL, Lamari L, Somers DJ (2003) Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • McDonald BA, Mundt CC, Chen RS (1996) The role of selection on the genetic structure of pathogen populations: evidence from field experiments with Mycosphaerella graminicola on wheat. Euphytica 92:73–80

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miedaner T, Zhao Y, Gowda M, Longin CFH, Korzun V, Ebmeyer E, Kazman E, Reif JC (2013) Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genom 14:858

    Article  Google Scholar 

  • O’Driscoll A, Kildea S, Doohan F, Spink J, Mullins E (2014) The wheat-Septoria conflict: a new front opening up? Trends Plant Sci 19(9):602–610

    Article  PubMed  Google Scholar 

  • Nazari K, Yahyaoui A, Abdalla O, Nachit M, Ogbonnaya, F, Brettell R, Rajaram S (2009) Wheat rust diseases in Central and West Asia and North Africa (CWANA) and breeding for the multiple disease resistance. In: Presented at the international workshop on marker assisted breeding for disease resistance in wheat, Karaj, 10–12 May 2009

  • Raman H, Milgate A (2012) Molecular breeding for Septoria tritici blotch resistance in wheat. Cereal Res Commun 40:451–466. doi:10.1556/CRC.40.2012.4.1

    Article  CAS  Google Scholar 

  • Raman R, Milgate AW, Imtiaz M, Tan M-K, Raman H, Lisle C, Coombes N, Martin P (2009) Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat. Mol Breed 24:153–164. doi:10.1007/s11032-009-9280-0

    Article  CAS  Google Scholar 

  • Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T (2011) Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology 101:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Saari EE, Prescott JM (1975) A scale for appraising the foliar intensity of wheat disease. Plant Dis Rep 59:377–380

    Google Scholar 

  • Siah A, Elbekali AY, Ramdani A, Reignault P, Torriani SFF, Brunner PC, Halama P (2014) QoI resistance and mitochondrial genetic structure of Zymoseptoria tritici in Morocco. Plant Dis 98:1138–1144

    Article  CAS  Google Scholar 

  • Simón MR, Cordo CA, Castillo NS, Struik PC, Börner A (2012) Population structure of Mycosphaerella graminicola and location of genes for resistance to the pathogen: recent advances in Argentina. Int J Agron, ID 680275, p 7

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2000) Characterization of trinucleotide SSR motifs wheat. Theor Appl Genet 104:286–293

    Article  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira G, Gay G, Qi L, Gill B, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Tabib Ghaffary SM, Robert O, Laurent V, Lonnet P, Margale E, van der Lee TA, Visser RG, Kema GH (2011) Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor Appl Genet 123:741–754

    Article  PubMed Central  Google Scholar 

  • Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RG, van der Lee TA, Robert O, Kema GH (2012) New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124:125–142

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Zhu C, Zhai H, Wan J (2005) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res 86(2):97–106

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li H, Zhang L, Li C, Meng L (2014a) Users’manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Bejing, Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang E, Maccaferri M, Salvi S, Milner S, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC, Lillemo M, Mather D, Appels R, Dolferus R, BrownGuedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90000 SNP array. Plant Biotechnol J 6:787–796

    Article  CAS  Google Scholar 

  • Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180(4):2201–2208

Download references

Acknowledgments

For the initiation of the mapping population development we thank Manilal William. We also thank Claudia Nuñez for her excellent technical assistance. This work was supported by CGIAR Research program on wheat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Dreisigacker.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Miedaner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 15 kb)

Supplementary material 2 (DOCX 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreisigacker, S., Wang, X., Martinez Cisneros, B.A. et al. Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor Appl Genet 128, 2317–2329 (2015). https://doi.org/10.1007/s00122-015-2587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2587-9

Keywords

Navigation