Skip to main content
Log in

Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This manuscript describes the transfer and molecular cytogenetic characterization of a novel source of Fusarium head blight resistance in wheat.

Abstract

Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe [telomorph = Gibberella zeae (Schwein. Fr.) Petch] is an important disease of bread wheat, Triticum aestivum L. (2n = 6x = 42, AABBDD) worldwide. Wheat has limited resistance to FHB controlled by many loci and new sources of resistance are urgently needed. The perennial grass Elymus tsukushiensis thrives in the warm and humid regions of China and Japan and is immune to FHB. Here, we report the transfer and mapping of a major gene Fhb6 from E. tsukushiensis to wheat. Fhb6 was mapped to the subterminal region in the short arm of chromosome 1Ets#1S of E. tsukushiensis. Chromosome engineering was used to replace corresponding homoeologous region of chromosome 1AS of wheat with the Fhb6 associated chromatin derived from 1Ets#1S of E. tsukushiensis. Fhb6 appears to be new locus for wheat as previous studies have not detected any FHB resistance QTL in this chromosome region. Plant progenies homozygous for Fhb6 had a disease severity rating of 7 % compared to 35 % for the null progenies. Fhb6 has been tagged with molecular markers for marker-assisted breeding and pyramiding of resistance loci for effective control of FHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai G, Shaner G (1994) Scab of wheat: prospects for control. Plant Dis 78:760–766

    Article  Google Scholar 

  • Ban T (1997) Evaluation of resistance to Fusarium head blight in indigenous Japanese species of Agropyron (Elymus). Euphytica 97:39–44

    Article  Google Scholar 

  • Cuppen E (2007) Genotyping by allele-specific amplification (KASPar). CSH Protoc 2007:172–173

    Google Scholar 

  • Cuthbert PA, Somers DJ, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437. doi:10.1007/s00122-006-0439-3

    Article  CAS  PubMed  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611. doi:10.1007/s00412-012-0384-7

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Bockus W, Chen PD, Qi LL, Cainong J, Wilson DL, Raupp WJ, Poland J, Bowden RL, Fritz AK, Gill BS (2013) Notice of release of KS14WGRC61 Fusarium head blight-resistant wheat germ plasm. Annu Wheat Newslett 59:137

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839. doi:10.1139/g91-128

    Article  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89. doi:10.1007/s10142-005-0007-y

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Seifers DL, Qi LL, Pumphrey MO, Friebe B, Gill BS (2011) A compensating wheat—Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci 51:2382–2390. doi:10.2135/cropsci2011.03.0118

    Article  CAS  Google Scholar 

  • Liu W, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS, Pumphrey MO (2013) Development and characterization of a compensating wheat—Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177. doi:10.1007/s00122-013-2044-6

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KF, Sehgal SK, Li W, Gill BS, Bevan MW, Simková H, Dolezel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 119:7940–7945. doi:10.1073/pnas.1219082110

    Article  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386. doi:10.1111/j.1439-0523.1995.tb00816

    Article  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19. doi:10.1007/s10577-006-1108-8

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166. doi:10.1007/s00122-008-0853-9

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Chen Q, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167. doi:10.1007/s00122-011-1574-z

    Article  CAS  PubMed  Google Scholar 

  • Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of genetic stocks of wheat, Triticum aestivum L. em Thell. and its relatives. Wheat Inf Serv 81:51–55

    Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Reptr 4:102–109. doi:10.1007/BF02732107

    Article  CAS  Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G (1999) Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S (eds) Methods and protocols: methods in molecular biology. Bioinformatics Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sehgal G, Liu B, Vega JM, Abbo S, Rodova M, Feldman M (1997) Identification of a chromosome-specific probe that maps within the Ph1 deletion in common and durum. Theor Appl Genet 94:968–970

    Article  Google Scholar 

  • Wang SL, Qi LL, Chen PD, Liu DJ, Friebe B, Gill BS (1999) Molecular cytogenetic identification of wheat-Elymus tsukushiensis introgression lines. Euphytica 107:217–224

    Article  Google Scholar 

  • Weng YQ, Liu DJ (1989) Morphology, scab resistance and cytogenetics of intergeneric hybrids of Triticum aestivum L. with Roegneria kamoji C. Koch (Agropyron) species. Scin Agric Sin 22:1–7

    Google Scholar 

  • Weng YQ, Wu LF, Chen PD, Liu DJ (1995) Development of alien addition line of wheat with scab resistance from Roegneria kamojii C. Koch. In: Li ZS, Xin ZY (eds) Proceedings 8th international wheat genetic symposium Beijing, China, pp 365–368

  • Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z (2010) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156. doi:10.1007/s00122-010-1298-5

    Article  PubMed  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063. doi:10.1007/s00122-011-1647-z

    Article  PubMed  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344. doi:10.1007/s004120100159

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299. doi:10.1007/s00412-004-0273-9

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987. doi:10.1139/G04-042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank W. John Raupp and Robert R McIntosh for critical editorial review of the manuscript and Duane Wilson for technical assistance. This research was supported by grants from the U.S. Wheat and Barley Scab Initiative, the Kansas Wheat Commission, the Kansas Crop Improvement Association and WGRC I/UCRC NSF contract 1338897. This is contribution number 14-395-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, U.S.A.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Additional information

Communicated by Pat Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cainong, J.C., Bockus, W.W., Feng, Y. et al. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet 128, 1019–1027 (2015). https://doi.org/10.1007/s00122-015-2485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2485-1

Keywords

Navigation