Skip to main content

Advertisement

Log in

High glucose: an emerging association between diabetes mellitus and cancer progression

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The association of cancer and diabetes mellitus (DM) has been studied for decades. Hyperglycemia and the imbalance of hormones are factors that contribute to the molecular link between DM and carcinogenesis and cancer progression. Hyperglycemia alone or in combination with hyperinsulinemia are key factors that promote cancer aggressiveness. Many preclinical studies suggest that high glucose induces abnormal energy metabolism and aggressive cancer via several mechanisms. As evidenced by clinical studies, hyperglycemia is associated with poor clinical outcomes in patients who have comorbid DM. The prognoses of cancer patients with DM are improved when their plasma glucose levels are controlled. This suggests that high glucose level maybe be involved in the molecular mechanism that causes the link between DM and cancer and may also be useful for prognosis of cancer progression. This review comprehensively summarizes the evidence from recent pre-clinical and clinical studies of the impact of hyperglycemia on cancer advancement as well as the underlying molecular mechanism for this impact. Awareness among clinicians of the association between hyperglycemia or DM and cancer progression may improve cancer treatment outcome in patients who have DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843

    Article  PubMed  Google Scholar 

  2. American Diabetes Association (2020) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care 43(Supplement 1):S14–S31

    Article  Google Scholar 

  3. American Diabetes Association (2020) 11. Microvascular complications and foot care: standards of medical care in diabetes−2020. Diabetes Care 43(Supplement 1):S135–S151

    Article  Google Scholar 

  4. American Diabetes Association (2020) 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2020. Diabetes Care 43(Supplement 1):S111–S134

    Article  Google Scholar 

  5. Satija A, Spiegelman D, Giovannucci E, Hu FB (2015) Type 2 diabetes and risk of cancer. Bmj 350:g7707

    Article  PubMed  Google Scholar 

  6. Ramteke P, Deb A, Shepal V, Bhat MK (2019) Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality. Cancers (Basel) 11(9):1402

    Article  CAS  Google Scholar 

  7. Fiorillo C, Rosa F, Quero G, Menghi R, Doglietto GB, Alfieri S (2017) Postoperative hyperglycemia in nondiabetic patients after gastric surgery for cancer: perioperative outcomes. Gastric Cancer 20(3):536–542

    Article  CAS  PubMed  Google Scholar 

  8. Ryu TY, Park J, Scherer PE (2014) Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 38(5):330–336

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, Wu E, Ma Q (2014) Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int 2014:461917–461910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Calderillo-Ruiz G, Lopez H, Herrera M, Trejo E, Carbajal B, Ramos-Ramirez M, Albarran A (2019) Obesity and hyperglycemia as a bad prognosis factor for recurrence and survival in colon cancer. Ann Oncol 30:iv40–iv41

    Google Scholar 

  11. Zylla D, Gilmore G, Eklund J, Richter S, Carlson A (2019) Impact of diabetes and hyperglycemia on health care utilization, infection risk, and survival in patients with cancer receiving glucocorticoids with chemotherapy. J Diabetes Complicat 33(4):335–339

    Article  Google Scholar 

  12. de Beer JC, Liebenberg L (2014) Does cancer risk increase with HbA1c, independent of diabetes? Br J Cancer 110(9):2361–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hosokawa T, Kurosaki M, Tsuchiya K, Matsuda S, Muraoka M, Suzuki Y, Tamaki N, Yasui Y, Nakata T, Nishimura T, Suzuki S, Ueda K, Nakanishi H, Itakura J, Takahashi Y, Izumi N (2013) Hyperglycemia is a significant prognostic factor of hepatocellular carcinoma after curative therapy. World J Gastroenterol 19(2):249–257

    Article  PubMed  PubMed Central  Google Scholar 

  14. Villarreal-Garza C, Shaw-Dulin R, Lara-Medina F, Bacon L, Rivera D, Urzua L, Aguila C, Ramirez-Morales R, Santamaria J, Bargallo E, Mohar A, Herrera LA (2012) Impact of diabetes and hyperglycemia on survival in advanced breast cancer patients. Exp Diabetes Res 2012:732027–732028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen S, Tao M, Zhao L, Zhang X (2017) The association between diabetes/hyperglycemia and the prognosis of cervical cancer patients: a systematic review and meta-analysis. Medicine (Baltimore) 96(40):e7981

    Article  Google Scholar 

  16. Wright JL, Plymate SR, Porter MP, Gore JL, Lin DW, Hu E, Zeliadt SB (2013) Hyperglycemia and prostate cancer recurrence in men treated for localized prostate cancer. Prostate Cancer Prostatic Dis 16(2):204–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fiorillo C, Quero G, Laterza V, Mascagni P, Longo F, Menghi R, Razionale F, Rosa F, Mezza T, Boskoski I, Giaccari A, Alfieri S (2020) Postoperative hyperglycemia affects survival after gastrectomy for cancer: a single-center analysis using propensity score matching. Surgery 167(5):815–820

    Article  PubMed  Google Scholar 

  18. Simon J-M, Thomas F, Czernichow S, Hanon O, Lemogne C, Simon T, Pannier B, Danchin N (2018) Hyperglycaemia is associated with cancer-related but not non-cancer-related deaths: evidence from the IPC cohort. Diabetologia 61(5):1089–1097

    Article  CAS  PubMed  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  20. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  21. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233

    Article  CAS  PubMed  Google Scholar 

  24. Rempel A, Mathupala SP, Perdersen PL (1996) Glucose catabolism in cancer cells: regulation of the type II hexokinase promoter by glucose and cyclic AMP. FEBS Lett 385(3):233–237

    Article  CAS  PubMed  Google Scholar 

  25. Kahn A (1997) Transcriptional regulation by glucose in the liver. Biochimie 79(2-3):113–118

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG, Permert J, Wang F (2013) Excess glucose induces hypoxia-inducible factor-1α in pancreatic cancer cells and stimulates glucose metabolism and cell migration. Cancer Biol Ther 14(5):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng L, Qin T, Ma J, Duan W, Xu Q, Li X, Han L, Li W, Wang Z, Zhang D, Ma Q, Lei J (2019) Hypoxia-inducible factor-1α mediates hyperglycemia-induced pancreatic cancer glycolysis. Anti Cancer Agents Med Chem 19(12):1503–1512

    Article  CAS  Google Scholar 

  28. Santos JM, Hussain F (2020) Higher glucose enhances breast cancer cell aggressiveness. Nutr Cancer 72(5):734–746

    Article  CAS  PubMed  Google Scholar 

  29. Xu X, Chen B, Zhu S, Zhang J, He X, Cao G, Chen B (2019) Hyperglycemia promotes snail-induced epithelial-mesenchymal transition of gastric cancer via activating ENO1 expression. Cancer Cell Int 19:344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang JJ, Jia JP, Shao Q, Wang YK (2019) Diabetes mellitus and risk of pancreatic cancer in China: a meta-analysis based on 26 case-control studies. Prim Care Diabetes 13(3):276–282

    Article  PubMed  Google Scholar 

  31. Tan J, You Y, Guo F, Xu J, Dai H, Bie P (2017) Association of elevated risk of pancreatic cancer in diabetic patients: a systematic review and meta-analysis. Oncol Lett 13(3):1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R (1990) Elevated insulin receptor content in human breast cancer. J Clin Invest 86(5):1503–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beger HG, Poch B, Mayer B, Siech M (2018) New onset of diabetes and pancreatic exocrine insufficiency after pancreaticoduodenectomy for benign and malignant tumors: a systematic review and meta-analysis of long-term results. Ann Surg 267(2):259–270

    Article  PubMed  Google Scholar 

  34. De Bruijn KM, van Eijck CH (2015) New-onset diabetes after distal pancreatectomy: a systematic review. Ann Surg 261(5):854–861

    Article  PubMed  Google Scholar 

  35. Batabyal P, Vander Hoorn S, Christophi C, Nikfarjam M (2014) Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol 21(7):2453–2462

    Article  PubMed  Google Scholar 

  36. Hu CM, Tien SC, Hsieh PK, Jeng YM, Chang MC, Chang YT, Chen YJ, Chen YJ, Lee EYP, Lee WH (2019) High glucose triggers nucleotide imbalance through O-GlcNAcylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell Metab 29(6):1334–1349.e1310

    Article  CAS  PubMed  Google Scholar 

  37. Zhou C, Qian W, Li J, Ma J, Chen X, Jiang Z, Cheng L, Duan W, Wang Z, Wu Z, Ma Q, Li X (2019) High glucose microenvironment accelerates tumor growth via SREBP1-autophagy axis in pancreatic cancer. J Exp Clin Cancer Res 38(1):302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Han L, Ma Q, Li J, Liu H, Li W, Ma G, Xu Q, Zhou S, Wu E (2011) High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS One 6(11):e27074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito M, Makino N, Matsuda A, Ikeda Y, Kakizaki Y, Saito Y, Ueno Y, Kawata S (2017) High glucose accelerates cell proliferation and increases the secretion and mRNA expression of osteopontin in human pancreatic duct epithelial cells. Int J Mol Sci 18(4). https://doi.org/10.3390/ijms18040807

  40. Luo J, Xiang Y, Xu X, Fang D, Li D, Ni F, Zhu X, Chen B, Zhou M (2018) High glucose-induced ROS production stimulates proliferation of pancreatic cancer via inactivating the JNK pathway. Oxidative Med Cell Longev 2018:6917206–6917210

    Google Scholar 

  41. Kiss K, Baghy K, Spisák S, Szanyi S, Tulassay Z, Zalatnai A, Löhr JM, Jesenofsky R, Kovalszky I, Firneisz G (2015) Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells. PLoS One 10(5):e0128059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D (2012) Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 35(11):2402–2411

    Article  PubMed  PubMed Central  Google Scholar 

  43. Esposito K, Chiodini P, Capuano A, Bellastella G, Maiorino MI, Rafaniello C, Giugliano D (2013) Metabolic syndrome and postmenopausal breast cancer: systematic review and meta-analysis. Menopause 20(12):1301–1309

    Article  PubMed  Google Scholar 

  44. Zhou Y, Zhang X, Gu C, Xia J (2015) Diabetes mellitus is associated with breast cancer: systematic review, meta-analysis, and in silico reproduction. Panminerva Med 57(3):101–108

    CAS  PubMed  Google Scholar 

  45. Zhou Y, Zhang X, Gu C, Xia J (2015) Influence of diabetes mellitus on mortality in breast cancer patients. ANZ J Surg 85(12):972–978

    Article  PubMed  Google Scholar 

  46. Thompson HJ, Neuhouser ML, Lampe JW, McGinley JN, Neil ES, Schwartz Y, McTiernan A (2016) Effect of low or high glycemic load diets on experimentally induced mammary carcinogenesis in rats. Mol Nutr Food Res 60(6):1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zielinska HA, Holly JMP, Bahl A, Perks CM (2018) Inhibition of FASN and ERα signalling during hyperglycaemia-induced matrix-specific EMT promotes breast cancer cell invasion via a caveolin-1-dependent mechanism. Cancer Lett 419:187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamamoto M, Patel NA, Taggart J, Sridhar R, Cooper DR (1999) A shift from normal to high glucose levels stimulates cell proliferation in drug sensitive MCF-7 human breast cancer cells but not in multidrug resistant MCF-7/ADR cells which overproduce PKC-betaII. Int J Cancer 83(1):98–106

    Article  CAS  PubMed  Google Scholar 

  49. Flores-López LA, Martínez-Hernández MG, Viedma-Rodríguez R, Díaz-Flores M, Baiza-Gutman LA (2016) High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol (Dordr) 39(4):365–378

    Article  CAS  Google Scholar 

  50. Wei ML, Duan P, Wang ZM, Ding M, Tu P (2017) High glucose and high insulin conditions promote MCF-7 cell proliferation and invasion by upregulating IRS1 and activating the Ras/Raf/ERK pathway. Mol Med Rep 16(5):6690–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nasir Kansestani A, Mansouri K, Hemmati S, Zare ME, Moatafaei A (2019) High glucose-reduced apoptosis in human breast cancer cells is mediated by activation of NF-κB. Iran J Allergy Asthma Immunol 18(2):153–162

    PubMed  Google Scholar 

  52. Wu K, Yu X, Huang Z, Zhu D, Yi X, Wu YL, Hao Q, Kemp KT 2nd, Elshimali Y, Iyer R, Nguyen KT, Zheng S, Chen G, Chen QH, Wang G, Vadgama JV, Wu Y (2019) Targeting of PP2Cδ by a small molecule C23 inhibits high glucose-induced breast cancer progression in vivo. Antioxid Redox Signal 30(17):1983–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou Y, Zhou M, Xie J, Chao P, Feng Q, Wu J (2017) High glucose levels promote the proliferation of breast cancer cells through GTPases. Breast Cancer (Dove Med Press) 9:429–436

    CAS  Google Scholar 

  54. Adham SA, Al Rawahi H, Habib S, Al Moundhri MS, Viloria-Petit A, Coomber BL (2014) Modeling of hypo/hyperglycemia and their impact on breast cancer progression related molecules. PLoS One 9(11):e113103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhu S, Yao F, Li WH, Wan JN, Zhang YM, Tang Z, Khan S, Wang CH, Sun SR (2013) PKC?-dependent activation of the ubiquitin proteasome system is responsible for high glucose-induced human breast cancer MCF-7 cell proliferation, migration and invasion. Asian Pac J Cancer Prev 14(10):5687–5692

    Article  PubMed  Google Scholar 

  56. Matsui C, Takatani-Nakase T, Maeda S, Nakase I, Takahashi K (2017) Potential roles of GLUT12 for glucose sensing and cellular migration in MCF-7 human breast cancer cells under high glucose conditions. Anticancer Res 37(12):6715–6722

    CAS  PubMed  Google Scholar 

  57. Sun S, Sun Y, Rong X, Bai L (2019) High glucose promotes breast cancer proliferation and metastasis by impairing angiotensinogen expression. Biosci Rep 39(6). https://doi.org/10.1042/bsr20190436

  58. Lee SK, Moon JW, Lee YW, Lee JO, Kim SJ, Kim N, Kim J, Kim HS, Park SH (2015) The effect of high glucose levels on the hypermethylation of protein phosphatase 1 regulatory subunit 3C (PPP1R3C) gene in colorectal cancer. J Genet 94(1):75–85

    Article  CAS  PubMed  Google Scholar 

  59. Chen YC, Ou MC, Fang CW, Lee TH, Tzeng SL (2019) High glucose concentrations negatively regulate the IGF1R/Src/ERK Axis through the microRNA-9 in colorectal cancer. Cells 8(4). https://doi.org/10.3390/cells8040326

  60. Vasconcelos-Dos-Santos A, Loponte HF, Mantuano NR, Oliveira IA, de Paula IF, Teixeira LK, de Freitas-Junior JC, Gondim KC, Heise N, Mohana-Borges R, Morgado-Díaz JA, Dias WB, Todeschini AR (2017) Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 6(3):e306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saengboonmee C, Seubwai W, Wongkham C, Wongkham S (2015) Diabetes mellitus: possible risk and promoting factors of cholangiocarcinoma: association of diabetes mellitus and cholangiocarcinoma. Cancer Epidemiol 39(3):274–278

    Article  PubMed  Google Scholar 

  62. Chen Y, Liu R, Chu Z, Le B, Zeng H, Zhang X, Wu Q, Zhu G, Chen Y, Liu Y, Sun F, Lu Z, Qiao Y, Wang J (2018) High glucose stimulates proliferative capacity of liver cancer cells possibly via O-GlcNAcylation-dependent transcriptional regulation of GJC1. J Cell Physiol 234(1):606–618

    Article  PubMed  CAS  Google Scholar 

  63. Li X, Cheng T, He Y, Zhou S, Wang Y, Zhang K, Yu P (2019) High glucose regulates ERp29 in hepatocellular carcinoma by LncRNA MEG3-miRNA 483-3p pathway. Life Sci 232:116602

    Article  CAS  PubMed  Google Scholar 

  64. Saengboonmee C, Seubwai W, Pairojkul C, Wongkham S (2016) High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation. Sci Rep 6:18995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jayedi A, Djafarian K, Rezagholizadeh F, Mirzababaei A, Hajimohammadi M, Shab-Bidar S (2018) Fasting blood glucose and risk of prostate cancer: a systematic review and meta-analysis of dose-response. Diabetes Metab 44(4):320–327

    Article  CAS  PubMed  Google Scholar 

  66. Feng X, Song M, Preston MA, Ma W, Hu Y, Pernar CH, Stopsack KH, Ebot EM, Fu BC, Zhang Y, Li N, Dai M, Liu L, Giovannucci EL, Mucci LA (2020) The association of diabetes with risk of prostate cancer defined by clinical and molecular features. Br J Cancer 123:657–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jian Gang P, Mo L, Lu Y, Runqi L, Xing Z (2015) Diabetes mellitus and the risk of prostate cancer: an update and cumulative meta-analysis. Endocr Res 40(1):54–61

    Article  PubMed  CAS  Google Scholar 

  68. Cai H, Xu Z, Xu T, Yu B, Zou Q (2015) Diabetes mellitus is associated with elevated risk of mortality amongst patients with prostate cancer: a meta-analysis of 11 cohort studies. Diabetes Metab Res Rev 31(4):336–343

    Article  PubMed  Google Scholar 

  69. Rezende LP, Galheigo MRU, Landim BC, Cruz AR, Botelho FV, Zanon RG, Góes RM, Ribeiro DL (2019) Effect of glucose and palmitate environment on proliferation and migration of PC3-prostate cancer cells. Cell Biol Int 43(4):373–383

    Article  CAS  PubMed  Google Scholar 

  70. Li X, Li J, Cai Y, Peng S, Wang J, Xiao Z, Wang Y, Tao Y, Li J, Leng Q, Wu D, Yang S, Ji Z, Han Y, Li L, Gao X, Zeng C, Wen X (2018) Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Lett 418:211–220

    Article  CAS  PubMed  Google Scholar 

  71. Chen JY, Wang FB, Xu H, Xu LF, Chen D, Liu WH, Mu X, Wen YQ (2019) High glucose promotes prostate cancer cells apoptosis via Nrf2/ARE signaling pathway. Eur Rev Med Pharmacol Sci 23(3 Suppl):192–200

    PubMed  Google Scholar 

  72. Kellenberger LD, Petrik J (2018) Hyperglycemia promotes insulin-independent ovarian tumor growth. Gynecol Oncol 149(2):361–370

    Article  CAS  PubMed  Google Scholar 

  73. Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, Sheng X, Zhou C, Bae-Jump VL (2015) Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol 138(3):668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wallbillich JJ, Josyula S, Saini U, Zingarelli RA, Dorayappan KD, Riley MK, Wanner RA, Cohn DE, Selvendiran K (2017) High glucose-mediated STAT3 activation in endometrial cancer is inhibited by metformin: therapeutic implications for endometrial cancer. PLoS One 12(1):e0170318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li YG, Han BB, Li F, Yu JW, Dong ZF, Niu GM, Qing YW, Li JB, Wei M, Zhu W (2016) High glucose induces down-regulated GRIM-19 expression to activate STAT3 signaling and promote cell proliferation in cell culture. PLoS One 11(4):e0153659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gao L, Xu FM, Shi WJ, Zhang S, Lu YL, Zhao DK, Long YF, Teng RB, Ge B (2018) High-glucose promotes proliferation of human bladder cancer T24 cells by activating Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 22(23):8151–8160

    CAS  PubMed  Google Scholar 

  77. Kim D, Ahn BN, Kim Y, Hur DY, Yang JW, Park GB, Jang JE, Lee EJ, Kwon MJ, Kim TN, Kim MK, Park JH, Rhee BD, Lee SH (2019) High glucose with insulin induces cell cycle progression and activation of oncogenic signaling of bladder epithelial cells cotreated with metformin and pioglitazone. J Diabetes Res 2019:2376512–2376510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bao Z, Chen K, Krepel S, Tang P, Gong W, Zhang M, Liang W, Trivett A, Zhou M, Wang JM (2019) High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Transl Oncol 12(9):1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  79. Liao YF, Yin S, Chen ZQ, Li F, Zhao B (2018) High glucose promotes tumor cell proliferation and migration in lung adenocarcinoma via the RAGE-NOXs pathway. Mol Med Rep 17(6):8536–8541

    CAS  PubMed  Google Scholar 

  80. Wang L, Zhong N, Liu S, Zhu X, Liu Y (2017) High glucose stimulates proliferation and inhibits apoptosis of non-small-cell lung cancer cells by JNK-mediated downregulation of p53 pathway. Acta Biochim Biophys Sin Shanghai 49(3):286–288

    PubMed  Google Scholar 

  81. Ding CZ, Guo XF, Wang GL, Wang HT, Xu GH, Liu YY, Wu ZJ, Chen YH, Wang J, Wang WG (2018) High glucose contributes to the proliferation and migration of non-small cell lung cancer cells via GAS5-TRIB3 axis. Biosci Rep 38(2). https://doi.org/10.1042/bsr20171014

  82. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134

    Article  CAS  PubMed  Google Scholar 

  83. Buchheit CL, Weigel KJ, Schafer ZT (2014) Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 14(9):632–641

    Article  CAS  PubMed  Google Scholar 

  84. Li W, Ma Q, Li J, Guo K, Liu H, Han L, Ma G (2011) Hyperglycemia enhances the invasive and migratory activity of pancreatic cancer cells via hydrogen peroxide. Oncol Rep 25(5):1279–1287

    CAS  PubMed  Google Scholar 

  85. Li W, Zhang L, Chen X, Jiang Z, Zong L, Ma Q (2016) Hyperglycemia promotes the epithelial-mesenchymal transition of pancreatic cancer via hydrogen peroxide. Oxidative Med Cell Longev 2016:5190314–5190319

    Google Scholar 

  86. Li W, Ma Z, Ma J, Li X, Xu Q, Duan W, Chen X, Lv Y, Zhou S, Wu E, Ma Q, Huo X (2015) Hydrogen peroxide mediates hyperglycemia-induced invasive activity via ERK and p38 MAPK in human pancreatic cancer. Oncotarget 6(31):31119–31133

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cao L, Chen X, Xiao X, Ma Q, Li W (2016) Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. Int J Oncol 49(2):735–743

    Article  CAS  PubMed  Google Scholar 

  88. Li W, Wang Z, Xiao X, Han L, Wu Z, Ma Q, Cao L (2019) Curcumin attenuates hyperglycemia-driven EGF-induced invasive and migratory abilities of pancreatic cancer via suppression of the ERK and AKT pathways. Oncol Rep 41(1):650–658

    CAS  PubMed  Google Scholar 

  89. Rahn S, Zimmermann V, Viol F, Knaack H, Stemmer K, Peters L, Lenk L, Ungefroren H, Saur D, Schäfer H, Helm O, Sebens S (2018) Diabetes as risk factor for pancreatic cancer: hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett 415:129–150

    Article  CAS  PubMed  Google Scholar 

  90. Sun XF, Shao YB, Liu MG, Chen Q, Liu ZJ, Xu B, Luo SX, Liu H (2017) High-concentration glucose enhances invasion in invasive ductal breast carcinoma by promoting Glut1/MMP2/MMP9 axis expression. Oncol Lett 13(5):2989–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Viedma-Rodríguez R, Martínez-Hernández MG, Flores-López LA, Baiza-Gutman LA (2018) Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system. Mol Cell Biochem 437(1-2):65–80

    Article  PubMed  CAS  Google Scholar 

  92. Takatani-Nakase T, Matsui C, Maeda S, Kawahara S, Takahashi K (2014) High glucose level promotes migration behavior of breast cancer cells through zinc and its transporters. PLoS One 9(2):e90136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kallens V, Tobar N, Molina J, Bidegain A, Smith PC, Porras O, Martínez J (2017) Glucose promotes a pro-oxidant and pro-inflammatory stromal microenvironment which favors motile properties in breast tumor cells. J Cell Biochem 118(5):994–1002

    Article  CAS  PubMed  Google Scholar 

  94. Fainsod-Levi T, Gershkovitz M, Völs S, Kumar S, Khawaled S, Sagiv JY, Sionov RV, Grunewald M, Keshet E, Granot Z (2017) Hyperglycemia impairs neutrophil mobilization leading to enhanced metastatic seeding. Cell Rep 21(9):2384–2392

    Article  CAS  PubMed  Google Scholar 

  95. Wu J, Chen J, Xi Y, Wang F, Sha H, Luo L, Zhu Y, Hong X, Bu S (2018) High glucose induces epithelial-mesenchymal transition and results in the migration and invasion of colorectal cancer cells. Exp Ther Med 16(1):222–230

    PubMed  PubMed Central  Google Scholar 

  96. Lin CY, Lee CH, Huang CC, Lee ST, Guo HR, Su SB (2015) Impact of high glucose on metastasis of colon cancer cells. World J Gastroenterol 21(7):2047–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Phoomak C, Vaeteewoottacharn K, Silsirivanit A, Saengboonmee C, Seubwai W, Sawanyawisuth K, Wongkham C, Wongkham S (2017) High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci Rep 7:43842

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lee YH, Yeh CH (2018) Laminar shear stress inhibits high glucose-induced migration and invasion in human bladder cancer cells. In Vitro Cell Dev Biol Anim 54(2):120–128

    Article  CAS  PubMed  Google Scholar 

  99. Gu CJ, Xie F, Zhang B, Yang HL, Cheng J, He YY, Zhu XY, Li DJ, Li MQ (2018) High glucose promotes epithelial-mesenchymal transition of uterus endometrial cancer cells by increasing ER/GLUT4-mediated VEGF Secretion. Cell Physiol Biochem 50(2):706–720

    Article  CAS  PubMed  Google Scholar 

  100. Guo J, Ye F, Jiang X, Guo H, Xie W, Zhang Y, Sheng X (2020) Drp1 mediates high glucose-induced mitochondrial dysfunction and epithelial-mesenchymal transition in endometrial cancer cells. Exp Cell Res 389(1):111880

    Article  CAS  PubMed  Google Scholar 

  101. Malek-Zietek KE, Targosz-Korecka M, Szymonski M (2017) The impact of hyperglycemia on adhesion between endothelial and cancer cells revealed by single-cell force spectroscopy. J Mol Recognit 30(9). https://doi.org/10.1002/jmr.2628

  102. Kang X, Kong F, Wu X, Ren Y, Wu S, Wu K, Jiang Z, Zhang W (2015) High glucose promotes tumor invasion and increases metastasis-associated protein expression in human lung epithelial cells by upregulating heme oxygenase-1 via reactive oxygen species or the TGF-β1/PI3K/Akt signaling pathway. Cell Physiol Biochem 35(3):1008–1022

    Article  CAS  PubMed  Google Scholar 

  103. Bhattacharyya S, Sul K, Krukovets I, Nestor C, Li J, Adognravi OS (2012) Novel tissue-specific mechanism of regulation of angiogenesis and cancer growth in response to hyperglycemia. J Am Heart Assoc 1(6):e005967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Krukovets I, Legerski M, Sul P, Stenina-Adognravi O (2015) Inhibition of hyperglycemia-induced angiogenesis and breast cancer tumor growth by systemic injection of microRNA-467 antagonist. FASEB J 29(9):3726–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ikemura M, Hashida T (2017) Effect of hyperglycemia on antitumor activity and survival in tumor-bearing mice receiving oxaliplatin and fluorouracil. Anticancer Res 37(10):5463–5468

    CAS  PubMed  Google Scholar 

  106. Ma YS, Yang IP, Tsai HL, Huang CW, Juo SH, Wang JY (2014) High glucose modulates antiproliferative effect and cytotoxicity of 5-fluorouracil in human colon cancer cells. DNA Cell Biol 33(2):64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ideno M, Sasaki S, Kobayashi M, Futagi Y, Narumi K, Iseki K (2016) Influence of high glucose state on bromopyruvate-induced cytotoxity by human colon cancer cell lines. Drug Metab Pharmacokinet 31(1):67–72

    Article  CAS  PubMed  Google Scholar 

  108. Xu X, Si M, Lou H, Yan Y, Liu Y, Zhu H, Lou X, Ma J, Zhu D, Wu H, Yang B, Wu H, Ding L, He Q (2018) Hyperglycemia decreases anti-cancer efficiency of Adriamycin via AMPK pathway. Endocr Relat Cancer 25(11):955–966

    Article  CAS  PubMed  Google Scholar 

  109. Al Qahtani A, Holly J, Perks C (2017) Hypoxia negates hyperglycaemia-induced chemo-resistance in breast cancer cells: the role of insulin-like growth factor binding protein 2. Oncotarget 8(43):74635–74648

    Article  PubMed  PubMed Central  Google Scholar 

  110. Biernacka KM, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, Perks CM, Holly JM (2013) Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr Relat Cancer 20(5):741–751

    Article  CAS  PubMed  Google Scholar 

  111. Zeng L, Zielinska HA, Arshad A, Shield JP, Bahl A, Holly JM, Perks CM (2016) Hyperglycaemia-induced chemoresistance in breast cancer cells: role of the estrogen receptor. Endocr Relat Cancer 23(2):125–134

    Article  CAS  PubMed  Google Scholar 

  112. Zeng L, Biernacka KM, Holly JM, Jarrett C, Morrison AA, Morgan A, Winters ZE, Foulstone EJ, Shield JP, Perks CM (2010) Hyperglycaemia confers resistance to chemotherapy on breast cancer cells: the role of fatty acid synthase. Endocr Relat Cancer 17(2):539–551

    Article  CAS  PubMed  Google Scholar 

  113. Yang IP, Miao ZF, Huang CW, Tsai HL, Yeh YS, Su WC, Chang TK, Chang SF, Wang JY (2019) High blood sugar levels but not diabetes mellitus significantly enhance oxaliplatin chemoresistance in patients with stage III colorectal cancer receiving adjuvant FOLFOX6 chemotherapy. Ther Adv Med Oncol 11:1758835919866964. https://doi.org/10.1177/1758835919866964

  114. Li J, Wu MF, Lu HW, Zhang BZ, Wang LJ, Lin ZQ (2016) Impact of hyperglycemia on outcomes among patients receiving neoadjuvant chemotherapy for bulky early stage cervical cancer. PLoS One 11(11):e0166612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zhao W, Chen R, Zhao M, Li L, Fan L, Che XM (2015) High glucose promotes gastric cancer chemoresistance in vivo and in vitro. Mol Med Rep 12(1):843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cao L, Xiao X, Lei J, Duan W, Ma Q, Li W (2016) Curcumin inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep 35(6):3728–3734

    Article  CAS  PubMed  Google Scholar 

  117. Gerards MC, van der Velden DL, Baars JW, Brandjes DPM, Hoekstra JBL, Vriesendorp TM, Gerdes VEA (2017) Impact of hyperglycemia on the efficacy of chemotherapy-a systematic review of preclinical studies. Crit Rev Oncol Hematol 113:235–241

    Article  PubMed  Google Scholar 

  118. Varghese S, Samuel SM, Varghese E, Kubatka P, Büsselberg D (2019) High glucose represses the anti-proliferative and pro-apoptotic effect of metformin in triple negative breast cancer cells. Biomolecules 9(1). https://doi.org/10.3390/biom9010016

  119. Rogalska A, Forma E, Bryś M, Śliwińska A, Marczak A (2018) Hyperglycemia-associated dysregulation of O-GlcNAcylation and HIF1A reduces anticancer action of metformin in ovarian cancer cells (SKOV-3). Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092750

  120. Litchfield LM, Mukherjee A, Eckert MA, Johnson A, Mills KA, Pan S, Shridhar V, Lengyel E, Romero IL (2015) Hyperglycemia-induced metabolic compensation inhibits metformin sensitivity in ovarian cancer. Oncotarget 6(27):23548–23560

    Article  PubMed  PubMed Central  Google Scholar 

  121. Valaee S, Yaghoobi MM, Shamsara M (2017) Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial-mesenchymal transition in a glucose-independent manner. PLoS One 12(3):e0174486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lv Y, Tian N, Wang J, Yang M, Kong L (2018) Metabolic switching in the hypoglycemic and antitumor effects of metformin on high glucose induced HepG2 cells. J Pharm Biomed Anal 156:153–162

    Article  CAS  PubMed  Google Scholar 

  123. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR (2020) Rosiglitazone enhances the apoptotic effect of 5-fluorouracil in colorectal cancer cells with high-glucose-induced glutathione. Sci Prog 103(1) 36850419886448. https://doi.org/10.1177/0036850419886448

  124. Lau MF, Vellasamy S, Chua KH, Sabaratnam V, Kuppusamy UR (2018) Rosiglitazone diminishes the high-glucose-induced modulation of 5-fluorouracil cytotoxicity in colorectal cancer cells. EXCLI J 17:186–199

    PubMed  PubMed Central  Google Scholar 

  125. Vernieri C, Galli F, Ferrari L, Marchetti P, Lonardi S, Maiello E, Iaffaioli RV, Zampino MG, Zaniboni A, De Placido S, Banzi M, Damiani A, Ferrari D, Rosati G, Labianca RF, Bidoli P, Frassineti GL, Nicolini M, Pavesi L, Tronconi MC, Buonadonna A, Ferrario S, Re GL, Adamo V, Tamburini E, Clerico M, Giordani P, Leonardi F, Barni S, Ciarlo A, Cavanna L, Gori S, Cinieri S, Faedi M, Aglietta M, Antista M, Dotti KF, Galli F, Di Bartolomeo M (2019) Impact of metformin use and diabetic status during adjuvant fluoropyrimidine-oxaliplatin chemotherapy on the outcome of patients with resected colon cancer: a TOSCA study subanalysis. Oncologist 24(3):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ling S, Brown K, Miksza JK, Howells LM, Morrison A, Issa E, Yates T, Khunti K, Davies MJ, Zaccardi F (2021) Risk of cancer incidence and mortality associated with diabetes: a systematic review with trend analysis of 203 cohorts. Nutr Metab Cardiovasc Dis 31(1):14–22

    Article  PubMed  Google Scholar 

  127. Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P (2013) Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostatic Dis 16(2):151–158, s151

    Article  CAS  PubMed  Google Scholar 

  128. Wang M, Yang Y, Liao Z (2020) Diabetes and cancer: epidemiological and biological links. World J Diabetes 11(6):227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lega IC, Lipscombe LL (2020) Review: diabetes, obesity, and cancer-pathophysiology and clinical implications. Endocr Rev 41(1):33–52

    Article  Google Scholar 

  130. Yu J, Sun R, Han X, Liu Z (2020) New-onset diabetes mellitus after distal pancreatectomy: a systematic review and meta-analysis. J Laparoendosc Adv Surg Tech A 30(11):1215–1222

    Article  PubMed  Google Scholar 

  131. Shirakawa S, Matsumoto I, Toyama H, Shinzeki M, Ajiki T, Fukumoto T, Ku Y (2012) Pancreatic volumetric assessment as a predictor of new-onset diabetes following distal pancreatectomy. J Gastrointest Surg 16(12):2212–2219

    Article  PubMed  PubMed Central  Google Scholar 

  132. Garcia-Compean D, Jaquez-Quintana JO, Gonzalez-Gonzalez JA, Maldonado-Garza H (2009) Liver cirrhosis and diabetes: risk factors, pathophysiology, clinical implications and management. World J Gastroenterol 15(3):280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang WC, Levey AS, Serio AM, Snyder M, Vickers AJ, Raj GV, Scardino PT, Russo P (2006) Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 7(9):735–740

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hwangbo Y, Kang D, Kang M, Kim S, Lee EK, Kim YA, Chang YJ, Choi KS, Jung SY, Woo SM, Ahn JS, Sim SH, Hong YS, Pastor-Barriuso R, Guallar E, Lee ES, Kong SY, Cho J (2018) Incidence of diabetes after cancer development: a Korean National Cohort Study. JAMA Oncol 4(8):1099–1105

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lee SY, Kurita N, Yokoyama Y, Seki M, Hasegawa Y, Okoshi Y, Chiba S (2014) Glucocorticoid-induced diabetes mellitus in patients with lymphoma treated with CHOP chemotherapy. Support Care Cancer 22(5):1385–1390

    Article  PubMed  Google Scholar 

  136. Feng JP, Yuan XL, Li M, Fang J, Xie T, Zhou Y, Zhu YM, Luo M, Lin M, Ye DW (2013) Secondary diabetes associated with 5-fluorouracil-based chemotherapy regimens in non-diabetic patients with colorectal cancer: results from a single-centre cohort study. Color Dis 15(1):27–33

    Article  Google Scholar 

  137. Meacham LR, Sklar CA, Li S, Liu Q, Gimpel N, Yasui Y, Whitton JA, Stovall M, Robison LL, Oeffinger KC (2009) Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch Intern Med 169(15):1381–1388

    Article  PubMed  PubMed Central  Google Scholar 

  138. Davidson J, Wilkinson A, Dantal J, Dotta F, Haller H, Hernández D, Kasiske BL, Kiberd B, Krentz A, Legendre C, Marchetti P, Markell M, van der Woude FJ, Wheeler DC (2003) New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation 75(10 Suppl):Ss3–S24

    PubMed  Google Scholar 

  139. Honors MA, Kinzig KP (2012) The role of insulin resistance in the development of muscle wasting during cancer cachexia. J Cachexia Sarcopenia Muscle 3(1):5–11

    Article  PubMed  Google Scholar 

  140. Gornik I, Vujaklija-Brajkovic A, Renar IP, Gasparovic V (2010) A prospective observational study of the relationship of critical illness associated hyperglycaemia in medical ICU patients and subsequent development of type 2 diabetes. Crit Care 14(4):R130

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Charupong Saengboonmee (PMAYP-10612) and Suangson Supabphol (PMAYP-10615) are awardees of Prince Mahidol Award Youth Program from Prince Mahidol Award Foundation under the Royal Patronage of HM the King of Thailand. Charupong Saengboonmee is also supported by Professor Peter Sicinski for his visiting program at Dana-Farber Cancer Institute and Harvard Medical School. We acknowledge help from Dr. Treerat Mahankasuwan, Khu Muang Hospital, Buriram, Thailand, for generating the illustrations and would like to thank Dr. Justin T. Reese for editing the manuscript via the Publication Clinic at KKU, Thailand.

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Suangson Supabphol, Wunchana Seubwai, Sopit Wongkham, and Charupong Saengboonmee. Review literature: Suangson Supabphol and Charupong Saengboonmee. Writing first draft of manuscript: Suangson Supabphol and Charupong Saengboonmee. Supervision, review, and editing of the manuscript: Wunchana Seubwai and Sopit Wongkham. All authors contribute to critically review and approve the final manuscript.

Corresponding author

Correspondence to Charupong Saengboonmee.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supabphol, S., Seubwai, W., Wongkham, S. et al. High glucose: an emerging association between diabetes mellitus and cancer progression. J Mol Med 99, 1175–1193 (2021). https://doi.org/10.1007/s00109-021-02096-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02096-w

Keywords

Navigation