Skip to main content

Advertisement

Log in

DUOX1 in mammalian disease pathophysiology

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Dual oxidase 1 (DUOX1) is a member of the protein family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. DUOX1 has several normal physiological, immunological, and biochemical functions in different parts of the body. Dysregulated oxidative metabolism interferes with various disease pathologies and numerous therapeutic options are based on targeting cellular redox pathways. DUOX1 forms an important enzymatic source of biological oxidants, and DUOX1 expression is frequently dysregulated in various diseases. While this review shortly addresses the biochemical and cellular properties and proposed physiological roles of DUOX1, its main purpose is to summarize the current knowledge with respect to the potential role of DUOX1 enzyme in disease pathology, especially in mammalian organisms. Although DUOX1 is normally prominently expressed in epithelial lineages, it is frequently silenced in epithelial-derived cancers by epigenetic mechanisms. While an abundance of information is available on DUOX1 transcription in different diseases, an increasing number of mechanistic studies indicate a causative relationship between DUOX1 function and disease pathophysiology. Additionally, specific functions of the DUOX1 maturation factor, DUOXA1, will also be addressed. Lastly, urgent and outstanding questions on the field of DUOX1 will be discussed that could provide valuable new diagnostic tools and novel therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

N/A.

Code availability

N/A.

Abbreviations

DUOX1:

Dual oxidase 1

NOX:

NADPH oxidase

ROS:

Reactive oxygen species

References

  1. Ohye H, Sugawara M (2010) Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med (Maywood) 235(4):424–433

    Article  CAS  Google Scholar 

  2. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB et al (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154(4):879–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarr D, Toth E, Gingerich A, Rada B (2018) Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol 56(6):373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ling Q, Shi W, Huang C, Zheng J, Cheng Q, Yu K, Chen S, Zhang H, Li N, Chen M (2014) Epigenetic silencing of dual oxidase 1 by promoter hypermethylation in human hepatocellular carcinoma. Am J Cancer Res 4(5):508–517

    PubMed  PubMed Central  Google Scholar 

  5. Dupuy C, Ohayon R, Valent A, Noel-Hudson MS, Deme D, Virion A (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 274(52):37265–37269

    Article  CAS  PubMed  Google Scholar 

  6. Pachucki J, Wang D, Christophe D, Miot F (2004) Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol Cell Endocrinol 214(1-2):53–62

    Article  CAS  PubMed  Google Scholar 

  7. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17(11):1502–1504

    Article  CAS  PubMed  Google Scholar 

  8. Dupuy C, Deme D, Kaniewski J, Pommier J, Virion A (1988) Ca2+ regulation of thyroid NADPH-dependent H2O2 generation. FEBS Lett 233(1):74–78

    Article  CAS  PubMed  Google Scholar 

  9. Morand S, Agnandji D, Noel-Hudson MS, Nicolas V, Buisson S, Macon-Lemaitre L, Gnidehou S, Kaniewski J, Ohayon R, Virion A et al (2004) Targeting of the dual oxidase 2 N-terminal region to the plasma membrane. J Biol Chem 279(29):30244–30251

    Article  CAS  PubMed  Google Scholar 

  10. Ameziane-El-Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D et al (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 280(34):30046–30054

    Article  CAS  PubMed  Google Scholar 

  11. Grasberger H, Refetoff S (2006) Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 281(27):18269–18272

    Article  CAS  PubMed  Google Scholar 

  12. Xu C, Linderholm A, Grasberger H, Harper RW (2012) Dual oxidase 2 bidirectional promoter polymorphisms confer differential immune responses in airway epithelia. Am J Respir Cell Mol Biol 47(4):484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirakawa S, Saito R, Ohara H, Okuyama R, Aiba S (2011) Dual oxidase 1 induced by Th2 cytokines promotes STAT6 phosphorylation via oxidative inactivation of protein tyrosine phosphatase 1B in human epidermal keratinocytes. J Immunol 186(8):4762–4770

    Article  CAS  PubMed  Google Scholar 

  14. Donko A, Ruisanchez E, Orient A, Enyedi B, Kapui R, Peterfi Z et al (2010) Urothelial cells produce hydrogen peroxide through the activation of Duox1. Free Radic Biol Med 49(12):2040–2048

    Article  CAS  PubMed  Google Scholar 

  15. Habibovic A, Hristova M, Heppner DE, Danyal K, Ather JL, Janssen-Heininger YM, Irvin CG, Poynter ME, Lundblad LK, Dixon AE et al (2016) DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1(18):e88811

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rada B, Park JJ, Sil P, Geiszt M, Leto TL (2014) NLRP3 inflammasome activation and interleukin-1beta release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm Res 63(10):821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meziani L, Gerbe de Thore M, Hamon P, Bockel S, Andrade Louzada R, Clemenson C et al (2020) Dual oxidase 1 limits the IFNgamma-associated antitumor effect of macrophages. J Immunother Cancer 8(1):e000622

    Article  PubMed  PubMed Central  Google Scholar 

  18. Patel U, Gingerich A, Widman L, Sarr D, Tripp RA, Rada B (2018) Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system. PLoS One 13(7):e0199167

    Article  PubMed  PubMed Central  Google Scholar 

  19. Donko A, Peterfi Z, Sum A, Leto T, Geiszt M (2005) Dual oxidases. Philos Trans R Soc Lond Ser B Biol Sci 360(1464):2301–2308

    Article  CAS  Google Scholar 

  20. Conner GE, Salathe M, Forteza R (2002) Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am J Respir Crit Care Med 166(12 Pt 2):S57–S61

    Article  PubMed  Google Scholar 

  21. Conner GE, Wijkstrom-Frei C, Randell SH, Fernandez VE, Salathe M (2007) The lactoperoxidase system links anion transport to host defense in cystic fibrosis. FEBS Lett 581(2):271–278

    Article  CAS  PubMed  Google Scholar 

  22. Gerson C, Sabater J, Scuri M, Torbati A, Coffey R, Abraham JW, Lauredo I, Forteza R, Wanner A, Salathe M et al (2000) The lactoperoxidase system functions in bacterial clearance of airways. Am J Respir Cell Mol Biol 22(6):665–671

    Article  CAS  PubMed  Google Scholar 

  23. Wijkstrom-Frei C, El-Chemaly S, Ali-Rachedi R, Gerson C, Cobas MA, Forteza R et al (2003) Lactoperoxidase and human airway host defense. Am J Respir Cell Mol Biol 29(2):206–212

    Article  CAS  PubMed  Google Scholar 

  24. Fragoso MA, Torbati A, Fregien N, Conner GE (2009) Molecular heterogeneity and alternative splicing of human lactoperoxidase. Arch Biochem Biophys 482(1-2):52–57

    Article  CAS  PubMed  Google Scholar 

  25. Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, di Candia M, Bandettini R, Ravazzolo R, Zegarra-Moran O et al (2007) Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 178(8):5144–5153

    Article  CAS  PubMed  Google Scholar 

  26. Moskwa P, Lorentzen D, Excoffon KJDA, Zabner J, McCray PB, Nauseef WM et al (2007) A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175(2):174–183

    Article  CAS  PubMed  Google Scholar 

  27. De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G et al (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275(30):23227–23233

    Article  PubMed  Google Scholar 

  28. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ et al (2002) Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347(2):95–102

    Article  CAS  PubMed  Google Scholar 

  29. Weber G, Rabbiosi S, Zamproni I, Fugazzola L (2013) Genetic defects of hydrogen peroxide generation in the thyroid gland. J Endocrinol Investig 36(4):261–266

    CAS  Google Scholar 

  30. Szinnai G (2014) Clinical genetics of congenital hypothyroidism. Endocr Dev 26:60–78

    Article  PubMed  Google Scholar 

  31. Rada B, Lekstrom K, Damian S, Dupuy C, Leto TL (2008) The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181(7):4883–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rada B, Boudreau HE, Park JJ, Leto TL (2014) Histamine stimulates hydrogen peroxide production by bronchial epithelial cells via histamine H1 receptor and dual oxidase. Am J Respir Cell Mol Biol 50(1):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forteza R, Salathe M, Miot F, Forteza R, Conner GE (2005) Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 32(5):462–469

    Article  CAS  PubMed  Google Scholar 

  34. Gattas MV, Forteza R, Fragoso MA, Fregien N, Salas P, Salathe M, Conner GE (2009) Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli. Free Radic Biol Med 47(10):1450–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459(7249):996–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang S, Linderholm A, Franzi L, Kenyon N, Grasberger H, Harper R (2013) Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med 65:38–46

    Article  CAS  PubMed  Google Scholar 

  37. Louzada RA, Corre R, Ameziane El Hassani R, Meziani L, Jaillet M, Cazes A et al (2020) NADPH oxidase DUOX1 sustains TGF-beta1 signalling and promotes lung fibrosis. Eur Respir J 57(1):1901949

    Article  Google Scholar 

  38. Faria CC, Fortunato RS (2020) The role of dual oxidases in physiology and cancer. Genet Mol Biol 43(1 suppl. 1):e20190096

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH (2017) Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev 41(2):139–157

    CAS  PubMed  Google Scholar 

  40. Sirokmany G, Donko A, Geiszt M (2016) Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends Pharmacol Sci 37(4):318–327

    Article  CAS  PubMed  Google Scholar 

  41. Little AC, Sham D, Hristova M, Danyal K, Heppner DE, Bauer RA, Sipsey LM, Habibovic A, van der Vliet A (2016) DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 5(10):e261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu CL, Qiu JL, Huang PZ, Zou RH, Hong J, Li BK, Chen GH, Yuan YF (2011) NADPH oxidase DUOX1 and DUOX2 but not NOX4 are independent predictors in hepatocellular carcinoma after hepatectomy. Tumour Biol 32(6):1173–1182

    Article  CAS  PubMed  Google Scholar 

  43. Luxen S, Noack D, Frausto M, Davanture S, Torbett BE, Knaus UG (2009) Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells. J Cell Sci 122(Pt 8):1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto TL (2009) Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 23(4):1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carre A, Louzada RA, Fortunato RS, Ameziane-El-Hassani R, Morand S, Ogryzko V et al (2015) When an intramolecular disulfide bridge governs the interaction of DUOX2 with its partner DUOXA2. Antioxid Redox Signal 23(9):724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meitzler JL, Hinde S, Banfi B, Nauseef WM (2013) Ortiz de Montellano PR. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J Biol Chem 288(10):7147–7157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ueyama T, Sakuma M, Ninoyu Y, Hamada T, Dupuy C, Geiszt M, Leto TL, Saito N (2015) The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release. J Biol Chem 290(10):6495–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie X, Hu J, Liu X, Qin H, Percival-Smith A, Rao Y, Li SS (2010) NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. Int J Biol Sci 6(3):252–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qin H, Percival-Smith A, Li C, Jia CY, Gloor G, Li SS (2004) A novel transmembrane protein recruits numb to the plasma membrane during asymmetric cell division. J Biol Chem 279(12):11304–11312

    Article  CAS  PubMed  Google Scholar 

  50. Ostrakhovitch EA (2009) Interplay between Numb and Notch in epithelial cancers: role for dual oxidase maturation factor. Eur J Cancer 45(12):2071–2076

    Article  CAS  PubMed  Google Scholar 

  51. Huang T, Zhou Y, Cheng AS, Yu J, To KF, Kang W (2016) NOTCH receptors in gastric and other gastrointestinal cancers: oncogenes or tumor suppressors? Mol Cancer 15(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nowell CS, Radtke F (2017) Notch as a tumour suppressor. Nat Rev Cancer 17(3):145–159

    Article  CAS  PubMed  Google Scholar 

  53. Sandiford SD, Kennedy KA, Xie X, Pickering JG, Li SS (2014) Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation. Cell Commun Signal 12:5

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kennedy KA, Ostrakhovitch EA, Sandiford SD, Dayarathna T, Xie X, Waese EY et al (2010) Mammalian numb-interacting protein 1/dual oxidase maturation factor 1 directs neuronal fate in stem cells. J Biol Chem 285(23):17974–17985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ostrakhovitch EA, Li SS (2010) NIP1/DUOXA1 expression in epithelial breast cancer cells: regulation of cell adhesion and actin dynamics. Breast Cancer Res Treat 119(3):773–786

    Article  CAS  PubMed  Google Scholar 

  56. Juarez MT, Patterson RA, Sandoval-Guillen E, McGinnis W (2011) Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila. PLoS Genet 7(12):e1002424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Hoeven R, Cruz MR, Chavez V, Garsin DA (2015) Localization of the dual oxidase BLI-3 and characterization of its NADPH oxidase domain during infection of Caenorhabditis elegans. PLoS One 10(4):e0124091

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hill T 3rd, Rice RH (2018) DUOX expression in human keratinocytes and bronchial epithelial cells: influence of vanadate. Toxicol in Vitro 46:257–264

    Article  CAS  PubMed  Google Scholar 

  59. Choi H, Park JY, Kim HJ, Noh M, Ueyama T, Bae Y, Lee TR, Shin DW (2014) Hydrogen peroxide generated by DUOX1 regulates the expression levels of specific differentiation markers in normal human keratinocytes. J Dermatol Sci 74(1):56–63

    Article  CAS  PubMed  Google Scholar 

  60. Han H, Roan F, Ziegler SF (2017) The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev 278(1):116–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamid Q, Boguniewicz M, Leung DY (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94(2):870–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neis MM, Peters B, Dreuw A, Wenzel J, Bieber T, Mauch C et al (2006) Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol 118(4):930–937

    Article  CAS  PubMed  Google Scholar 

  63. Candel S, de Oliveira S, Lopez-Munoz A, Garcia-Moreno D, Espin-Palazon R, Tyrkalska SD et al (2014) Tnfa signaling through tnfr2 protects skin against oxidative stress-induced inflammation. PLoS Biol 12(5):e1001855

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hristova M, Veith C, Habibovic A, Lam YW, Deng B, Geiszt M, Janssen-Heininger YMW, van der Vliet A (2014) Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells. Redox Biol 2:436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cho DY, Nayak JV, Bravo DT, Le W, Nguyen A, Edward JA et al (2013) Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis. Int Forum Allergy Rhinol 3(5):376–383

    Article  PubMed  Google Scholar 

  66. Svenningsen S, Nair P (2017) Asthma endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne) 4:158

    Article  Google Scholar 

  67. Harper RW, Xu C, Eiserich JP, Chen Y, Kao CY, Thai P, Setiadi H, Wu R (2005) Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett 579(21):4911–4917

    Article  CAS  PubMed  Google Scholar 

  68. Wynne M, Atkinson C, Schlosser RJ, Mulligan JK (2019) Contribution of epithelial cell dysfunction to the pathogenesis of chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy 33(6):782–790

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shao MX, Nadel JA (2005) Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci U S A 102(3):767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF et al (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99(2):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature. 401(6748):79–82

    Article  CAS  PubMed  Google Scholar 

  72. Nagai K, Betsuyaku T, Suzuki M, Nasuhara Y, Kaga K, Kondo S, Nishimura M (2008) Dual oxidase 1 and 2 expression in airway epithelium of smokers and patients with mild/moderate chronic obstructive pulmonary disease. Antioxid Redox Signal 10(4):705–714

    Article  CAS  PubMed  Google Scholar 

  73. Stevens WW, Schleimer RP, Kern RC (2016) Chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract 4(4):565–572

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fischer H (2009) Mechanisms and function of DUOX in epithelia of the lung. Antioxid Redox Signal 11(10):2453–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Loukides S, Bouros D, Papatheodorou G, Panagou P, Siafakas NM (2002) The relationships among hydrogen peroxide in expired breath condensate, airway inflammation, and asthma severity. Chest. 121(2):338–346

    Article  CAS  PubMed  Google Scholar 

  76. Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA et al (2015) Chronic obstructive pulmonary disease. Nat Rev Dis Primers 1:15076

    Article  PubMed  Google Scholar 

  77. MacNee W (2000) Oxidants/antioxidants and COPD. Chest. 117(5 Suppl 1):303S–317S

    Article  CAS  PubMed  Google Scholar 

  78. Repine JE, Bast A, Lankhorst I (1997) Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med 156(2 Pt 1):341–357

    Article  CAS  PubMed  Google Scholar 

  79. Tian Z, Zhang H, Dixon J, Traphagen N, Wyatt TA, Kharbanda K, Simet Chadwick S, Kolliputi N, Allen-Gipson DS (2017) Cigarette smoke impairs A2A adenosine receptor mediated wound repair through up-regulation of Duox-1 expression. Sci Rep 7:44405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schiffers C, van de Wetering C, Bauer RA, Habibovic A, Hristova M, Dustin CM et al (2020) Downregulation of epithelial DUOX1 in chronic obstructive pulmonary disease contributes to disease pathogenesis. JCI Insight. 6(2):142189

    Article  Google Scholar 

  81. Barratt SL, Creamer A, Hayton C, Chaudhuri N (2018) Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med 7(8):201

    Article  CAS  PubMed Central  Google Scholar 

  82. Todaro DR, Augustus-Wallace AC, Klein JM, Haas AL (2018) Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly. J Biol Chem 293(47):18192–18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ballester B, Milara J, Cortijo J (2019) Idiopathic pulmonary fibrosis and lung cancer: mechanisms and molecular targets. Int J Mol Sci 20(3):593

    Article  CAS  PubMed Central  Google Scholar 

  84. Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A (2017) Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 110:117–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roy K, Wu Y, Meitzler JL, Juhasz A, Liu H, Jiang G, Lu J, Antony S, Doroshow JH (2015) NADPH oxidases and cancer. Clin Sci (Lond) 128(12):863–875

    Article  CAS  Google Scholar 

  86. Schmidt M, Rohe A, Platzer C, Najjar A, Erdmann F, Sippl W (2017) Regulation of G2/M transition by inhibition of WEE1 and PKMYT1 kinases. Molecules 22(12):2045

    Article  PubMed Central  Google Scholar 

  87. Luxen S, Belinsky SA, Knaus UG (2008) Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 68(4):1037–1045

    Article  CAS  PubMed  Google Scholar 

  88. Chen S, Ling Q, Yu K, Huang C, Li N, Zheng J et al (2016) Dual oxidase 1: a predictive tool for the prognosis of hepatocellular carcinoma patients. Oncol Rep 35(6):3198–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pulcrano M, Boukheris H, Talbot M, Caillou B, Dupuy C, Virion A, de Vathaire F, Schlumberger M (2007) Poorly differentiated follicular thyroid carcinoma: prognostic factors and relevance of histological classification. Thyroid. 17(7):639–646

    Article  PubMed  Google Scholar 

  90. Fortunato RS, Gomes LR, Munford V, Pessoa CF, Quinet A, Hecht F et al (2018) DUOX1 silencing in mammary cell alters the response to genotoxic stress. Oxidative Med Cell Longev 2018:3570526

    Article  Google Scholar 

  91. Greer JB, Whitcomb DC (2009) Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol 9(4):411–418

    Article  CAS  PubMed  Google Scholar 

  92. Cho SY, Kim S, Son MJ, Kim G, Singh P, Kim HN, Choi HG, Yoo HJ, Ko YB, Lee BS et al (2019) Dual oxidase 1 and NADPH oxidase 2 exert favorable effects in cervical cancer patients by activating immune response. BMC Cancer 19(1):1078

    Article  PubMed  PubMed Central  Google Scholar 

  93. You X, Ma M, Hou G, Hu Y, Shi X (2018) Gene expression and prognosis of NOX family members in gastric cancer. Onco Targets Ther 11:3065–3074

    Article  PubMed  PubMed Central  Google Scholar 

  94. Olusola P, Banerjee HN, Philley JV, Dasgupta S (2019) Human papilloma virus-associated cervical cancer and health disparities. Cells 8(6):622

    Article  CAS  PubMed Central  Google Scholar 

  95. McKay CJ, Glen P, McMillan DC (2008) Chronic inflammation and pancreatic cancer. Best Pract Res Clin Gastroenterol 22(1):65–73

    Article  CAS  PubMed  Google Scholar 

  96. Taunk NK, Haffty BG, Kostis JB, Goyal S (2015) Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  97. Heo GS, Kopecky B, Sultan D, Ou M, Feng G, Bajpai G, Zhang X, Luehmann H, Detering L, Su Y et al (2019) Molecular imaging visualizes recruitment of inflammatory monocytes and macrophages to the injured heart. Circ Res 124(6):881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peng JJ, Xiong SQ, Ding LX, Peng J, Xia XB (2019) Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol 853:381–387

    Article  CAS  PubMed  Google Scholar 

  99. Filopei J, Frishman W (2012) Radiation-induced heart disease. Cardiol Rev 20(4):184–188

    Article  PubMed  Google Scholar 

  100. Yahyapour R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Farhood B, Nouruzi F, Shabeeb D, Eleojo Musa A, Najafi M (2018) Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int J Mol Cell Med 7(3):193–202

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kerner W, Bruckel J, German DA (2014) Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes 122(7):384–386

    Article  CAS  PubMed  Google Scholar 

  102. Aliasgharzadeh A, Farhood B, Amini P, Saffar H, Motevaseli E, Rezapoor S, Nouruzi F, Shabeeb DH, Eleojo Musa A, Mohseni M et al (2019) Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J 21(3):236–242

    PubMed  PubMed Central  Google Scholar 

  103. Pongnimitprasert N, El-Benna J, Foglietti MJ, Gougerot-Pocidalo MA, Bernard M, Braut-Boucher F (2008) Potential role of the “NADPH oxidases” (NOX/DUOX) family in cystic fibrosis. Ann Biol Clin (Paris) 66(6):621–629

    CAS  Google Scholar 

  104. Donko A, Morand S, Korzeniowska A, Boudreau HE, Zana M, Hunyady L et al (2014) Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2. Free Radic Biol Med 73:190–200

    Article  CAS  PubMed  Google Scholar 

  105. Liu S, Zhang W, Zhang L, Zou H, Lu K, Li Q, Xia H, Yan S, Ma X (2018) Genetic and functional analysis of two missense DUOX2 mutations in congenital hypothyroidism and goiter. Oncotarget. 9(4):4366–4374

    Article  PubMed  Google Scholar 

  106. Park W, Lee H, Kim EH, Yoon JY, Park JC, Shin SK, Lee SK, Lee YC, Kim WH, Noh SH (2012) Metabolic syndrome is an independent risk factor for synchronous colorectal neoplasm in patients with gastric neoplasm. J Gastroenterol Hepatol 27(9):1490–1497

    Article  PubMed  Google Scholar 

  107. Mu G, Mu X, Xing H, Xu R, Sun G, Dong C, Pan Q, Xu C (2015) Subclinical hypothyroidism as an independent risk factor for colorectal neoplasm. Clin Res Hepatol Gastroenterol 39(2):261–266

    Article  PubMed  Google Scholar 

  108. Tseng FY, Lin WY, Li CI, Li TC, Lin CC, Huang KC (2015) Subclinical hypothyroidism is associated with increased risk for cancer mortality in adult Taiwanese-a 10 years population-based cohort. PLoS One 10(4):e0122955

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee PL, West C, Crain K, Wang L (2006) Genetic polymorphisms and susceptibility to lung disease. J Negat Results Biomed 5:5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funds provided by the National Institute of Allergy and Infectious Diseases at the National Institutes of Health (1R01AI146857-A01 and 1R21AI147097-01A1 to B. Rada).

Author information

Authors and Affiliations

Authors

Contributions

N.M.A wrote and reviewed the manuscript; D.S. generated the figure and reviewed the manuscript; B.R. acquired funding, conceptualized, and reviewed the manuscript.

Corresponding author

Correspondence to Balázs Rada.

Ethics declarations

Ethics approval and consent to participate

N/A

Consent for publication

All authors reviewed the manuscript, are familiar with its content and agreed to publish it.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashtiwi, N.M., Sarr, D. & Rada, B. DUOX1 in mammalian disease pathophysiology. J Mol Med 99, 743–754 (2021). https://doi.org/10.1007/s00109-021-02058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02058-2

Keywords

Navigation