Skip to main content
Log in

Recent developments in solution nuclear magnetic resonance (NMR)-based molecular biology

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Visualizing post-translational modifications, conformations, and interaction surfaces of protein structures at atomic resolution underpins the development of novel therapeutics to combat disease. As computational resources expand, in silico calculations coupled with experimentally derived structures and functional assays have led to an explosion in structure-based drug design (SBDD) with several compounds in clinical trials. It is increasingly clear that “hidden” transition-state structures along activation trajectories can be harnessed to develop novel classes of allosteric inhibitors. The goal of this mini-review is to empower the clinical researcher with a general knowledge of the strengths and weaknesses of nuclear magnetic resonance (NMR) spectroscopy in molecular medicine. Although NMR can determine protein structures at atomic resolution, its unrivaled strength lies in sensing subtle changes in a nuclei’s chemical environment as a result of intrinsic conformational dynamics, solution conditions, and binding interactions. These can be recorded at atomic resolution, without explicit structure determination, and then incorporated with static structures or molecular dynamics simulations to produce a complete biological picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 A. resolution. Nature 185:422–427

    Article  CAS  PubMed  Google Scholar 

  2. Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106:1672–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736

    Article  CAS  PubMed  Google Scholar 

  4. Palmer AG 3rd, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  CAS  PubMed  Google Scholar 

  5. Yuwen T, Kay LE (2017) Longitudinal relaxation optimized amide 1H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins. J Biomol NMR. doi:10.1007/s10858-017-0104-y

  6. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405

    Article  CAS  PubMed  Google Scholar 

  7. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C.alpha. and C.beta. 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  CAS  Google Scholar 

  8. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651

    Article  CAS  PubMed  Google Scholar 

  9. Hung LH, Samudrala R (2003) Accurate and automated classification of protein secondary structure with PsiCSI. Protein Sci 12:288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheung MS, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223–233

    Article  CAS  PubMed  Google Scholar 

  11. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971

    Article  CAS  PubMed  Google Scholar 

  12. Berjanskii MV, Neal S, Wishart DS (2006) PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res 34:W63–W69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. London RE, Wingad BD, Mueller GA (2008) Dependence of amino acid side chain 13C shifts on dihedral angle: application to conformational analysis. J Am Chem Soc 130:11097–11105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen DF, Neudecker P, Kay LE (2010) Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts. J Am Chem Soc 132:7589–7591

    Article  CAS  PubMed  Google Scholar 

  16. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A 104:9615–9620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105:4685–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T et al (2010) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  21. Montalvao RW, Cavalli A, Salvatella X, Blundell TL, Vendruscolo M (2008) Structure determination of protein-protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity protein complex. J Am Chem Soc 130:15990–15996

    Article  CAS  PubMed  Google Scholar 

  22. Das R, Andre I, Shen Y, Wu Y, Lemak A, Bansal S, Arrowsmith CH, Szyperski T, Baker D (2009) Simultaneous prediction of protein folding and docking at high resolution. Proc Natl Acad Sci U S A 106:18978–18983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakhmutov VI (2004) Practical NMR relaxation for chemistsWiley, Chichester, West Sussex, England. Hoboken, NJ

    Book  Google Scholar 

  24. Cavanagh J (2007) Protein NMR spectroscopy : principles and practice 2nd edn. Academic Press, Amsterdam; Boston

  25. Levitt MH (2008) Spin dynamics : basics of nuclear magnetic resonance 2nd edn. John Wiley & Sons, Chichester, England; Hoboken, NJ

  26. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  PubMed  Google Scholar 

  27. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676

    Article  CAS  PubMed  Google Scholar 

  28. Fielding L (2003) NMR methods for the determination of protein-ligand dissociation constants. Curr Top Med Chem 3:39–53

    Article  CAS  PubMed  Google Scholar 

  29. Mandal PK, Majumdar A (2004) A comprehensive discussion of HSQC and HMQC pulse sequences. Concepts in magnetic resonance part a 20A: 1-23. DOI Doi 10.1002/Cmr.A.10095

  30. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42:864–890

    Article  CAS  PubMed  Google Scholar 

  32. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  33. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  35. Paulsson JF, Westermark GT (2005) Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes 54:2117–2125

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi K, Gal M, Shimada I, Wagner* G (2012) Chapter 2 low-[gamma] nuclei detection experiments for biomolecular NMR recent developments in biomolecular NMR. The Royal Society of Chemistry, pp. 25–52.

  37. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  39. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  PubMed  Google Scholar 

  41. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bibow S, Polyhach Y, Eichmann C, Chi CN, Kowal J, Albiez S, McLeod RA, Stahlberg H, Jeschke G, Guntert P et al (2017) Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol 24:187–193

    Article  CAS  PubMed  Google Scholar 

  43. Nasr ML, Baptista D, Strauss M, Sun ZJ, Grigoriu S, Huser S, Pluckthun A, Hagn F, Walz T, Hogle JM et al (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14:49–52

    Article  CAS  PubMed  Google Scholar 

  44. Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484–7485

    Article  CAS  PubMed  Google Scholar 

  45. Broecker J, Eger BT, Ernst OP (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid Nanodiscs. Structure 25:384–392

    Article  CAS  PubMed  Google Scholar 

  46. Keeler J (2010) Understanding NMR spectroscopy, 2nd edn. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  47. Downing AK (2004) Protein NMR techniques, 2nd edn. Humana Press, Totowa, N.J

    Book  Google Scholar 

  48. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teng Q (2005) Structural biology: practical NMR applicationsSpringer. York, New

    Google Scholar 

  50. Cavanagh J (2007) Protein NMR spectroscopy: principles and practice 2nd edn. Academic Press, Amsterdam; Boston

  51. Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2002) NMR analysis of a 900K GroEL-GroES complex. Nature 418:207–211

    Article  CAS  PubMed  Google Scholar 

  52. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  CAS  PubMed  Google Scholar 

  53. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding from National Institutes of Health grants K99GM115814 (JJZ), and P01 GM047467 and R01 AI037581 (GW), and a Gillian Fellowship from Howard Hughes Medical Institute (DB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziarek, J.J., Baptista, D. & Wagner, G. Recent developments in solution nuclear magnetic resonance (NMR)-based molecular biology. J Mol Med 96, 1–8 (2018). https://doi.org/10.1007/s00109-017-1560-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1560-2

Keywords

Navigation