Skip to main content
Log in

Characteristics of beech bark and its effect on properties of UF adhesive and on bonding strength and formaldehyde emission of plywood panels

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This research examined beech bark from a plywood manufacturer to determine its effectiveness in reducing wastes, protecting the ecological environment, and producing more eco-friendly wood-based materials. Beech bark was characterized and evaluated as an adhesive filler in plywood manufacturing, and the effects on the bonding quality and the formaldehyde emission of the plywood panels were examined. Plywood panels were made of formulations with urea-formaldehyde (UF) resin filled with three different concentrations of bark flour (BF): 1 wt%, 3 wt%, and 5 wt%. Compared with solid beech wood, beech bark has a higher lignin and extractives content and lower holocellulose content. It was confirmed that the bark absorbs formaldehyde and the solution with 5 wt% of bark absorbed the most formaldehyde. Panels with UF/BF formulations at a bark content of 1 wt%, 3 wt%, and 5 wt% had higher wet bonding strengths than those made with the control sample. The most significant reduction in formaldehyde emission (up to 42.3%) of plywood panels and the achievement of high bonding strength was observed for UF/BF samples with a bark concentration of 5 wt%. The bonding strength of plywood panels with all investigated BF concentrations met the requirements of the EN 314-2 standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Dmoor HM, El-Qudah JM (2016) Cake flour chlorination and alternative treatments (review). Curr Res Nutr Food Sci 4(2):127–134. https://doi.org/10.12944/CRNFSJ.4.2.06

    Article  Google Scholar 

  • Arbenz A, Avérous L (2015) Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem 17:2626–2646

    Article  CAS  Google Scholar 

  • Aydin I, Demirkir C, Colak S, Colakoğlu S (2017) Utilization of bark flours as additive in plywood manufacturing. Eur J Wood Prod 75:63–69. https://doi.org/10.1007/s00107-016-1096-0

    Article  CAS  Google Scholar 

  • Bekhta P, Sedliačik J, Kačík F, Noshchenko G, Kleinová A (2019) Lignocellulosic waste fibers and their application as a component of urea-formaldehyde adhesive composition in the manufacture of plywood. Eur J Wood Prod 77(4):495–508. https://doi.org/10.1007/s00107-019-01409-8

    Article  CAS  Google Scholar 

  • Benar P, Mandelli D, Gonçalves ARC, Ferreria MMC, Schuchardt U (1999) Principal component analysis on the hydroxymethylation of sugarcane lignin: a time-depending study by FTIR. J Wood Chem Technol 19(1–2):151–165

    Article  CAS  Google Scholar 

  • Bodîrlău R, Teacă CA, Spiridon I (2008) Chemical modification of beech wood: effect on thermal stability. BioResources 3(3):789–800. https://doi.org/10.15376/biores.3.3.789-800

    Article  Google Scholar 

  • Boran S, Usta M, Ondaral S, Gümüskaya E (2012) The efficiency of tannin as a formaldehyde scavenger chemical in medium density fiberboard. Compos Part B Eng 43:2487–2491. https://doi.org/10.1016/j.compositesb.2011.08.004

    Article  CAS  Google Scholar 

  • Brozdowski J, Waliszewska B, Sieradzka A, Spek-Dzwigala A (2018) Chemical composition of beech bark stripped and not stripped by animals. Ann Warsaw Univ Life Sci For Wood Technol 104:420–425

    Google Scholar 

  • Buyuksari U, Ayrilmis N, Avci E, Koc E (2009) Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresour Technol 101:255–259. https://doi.org/10.1016/j.biortech.2009.08.038

    Article  CAS  PubMed  Google Scholar 

  • Cetin NS, Ozmen N, Narlioglu N, Cavus V (2014) Effect of bark flour on the mechanical properties of HDPE composites. J Mater Sci 1:23–32. https://doi.org/10.12748/uujms.201416497

    Article  Google Scholar 

  • Chen N, Zheng P, Zeng Q, Lin Q, Rao J (2017) Characterization and performance of soy-based adhesives cured with epoxy resin. Polymers 9:514. https://doi.org/10.3390/polym9100514

    Article  CAS  PubMed Central  Google Scholar 

  • Chupin L, Motillon C, Charrier-El Bouhtoury F, Pizzi A, Charrier B (2013) Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Ind Crops Prod 49:897–903. https://doi.org/10.1016/j.indcrop.2013.06.045

    Article  CAS  Google Scholar 

  • Colakoglu G, Kalaycioglu H, Ors Y (1993) Utilization of the bark of Turkish red pine on particleboard and plywood manufacturing. In: International Red pine symposium, proceedings, October 18–23, Marmaris, Turkey, pp 701–710

  • Corder SE (1976) Properties and uses of bark as an energy source. Research Paper 31, Oregon State University, Forest Research Laboratory, Corvallis, OR, USA

  • Corderio N, Belgacem MN, Gandini A, Neto CP (1997) Urethanes and polyurethanes from suberin: 1. Kinetic study. Ind Crop Prod 6(2):163–167. https://doi.org/10.1016/S0926-6690(96)00212-9

    Article  Google Scholar 

  • Costa NA, Pereira J, Ferra J, Cruz P, Martins J, Magalhгes FD, Mendes A, Carvalho LH (2013) Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Sci Technol 47:1261–1272. https://doi.org/10.1007/s00226-013-0573-4

    Article  CAS  Google Scholar 

  • De Jong JI, De Jonge J (1953) Kinetics of the hydroxymethylation of phenols in dilute aqueous solution. Recueil des Travaux Chimiques des Pays Bas 72(6):497–509

    Article  Google Scholar 

  • de Melo RR, Del Menezzi CHS (2014) Influence of veneer thickness on the properties of LVL from Parica (Schizolobium amazonicum) plantation trees. Eur J Wood Prod 72(2):191–198. https://doi.org/10.1007/s00107-013-0770-8

    Article  CAS  Google Scholar 

  • Dijkstra R, De Jonge J, Lammers MF (1962) The kinetics of the reaction of phenol and formaldehyde. Recueil des Travaux Chimiques des Pays Bas 81(4):285–296

    Article  CAS  Google Scholar 

  • Dunky M (2003) Adhesives in the wood industry. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc., New York, p 71. https://doi.org/10.1201/9780203912225.ch47

    Chapter  Google Scholar 

  • EN 314-1 (2004) Plywood–—bonding quality—part 1: test methods. European Committee for Standardization, Brussels

    Google Scholar 

  • EN 314-2 (1993) Plywood—–bonding quality—part 2: requirements. European Committee for Standardization, Brussels

    Google Scholar 

  • EN ISO 11402 (2005) Phenolic, amino and condensation resins—–determination of free-formaldehyde content. International Organization for Standardization, Geneva

    Google Scholar 

  • EN ISO 12460-4 (2016) Wood based panels—determination of formaldehyde release—–part 4: desiccator method (ISO 12460-4:2016). European Committee for Standardization, Brussels

    Google Scholar 

  • FAO (2018) Global production and trade of forest products in 2017. http://www.fao.org/forestry/statistics/80938/en/

  • Feng S, Cheng S, Yuan Z, Leitch M, Xu C (2013) Valorization of bark for chemicals and materials: a review. Renew Sustain Energy Rev 26:560–578. https://doi.org/10.1016/j.rser.2013.06.024

    Article  CAS  Google Scholar 

  • Frihart CR, Hunt CG (2010) Adhesives with wood materials, bond formation and performance. In: Wood Handbook—wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Ch. 10

  • Gangi M, Tabarsa T, Sepahvand S, Asghari J (2013) Reduction of formaldehyde emission from plywood. J Adhes Sci Technol 27:1407–1417. https://doi.org/10.1080/01694243.2012.739016

    Article  CAS  Google Scholar 

  • Gardner DJ, McGinnis GD (1988) Comparison of the reaction rates of the alkali–catalyzed addition of formaldehyde to phenol and selected lignins. J Wood Chem Technol 8(2):261–288

    Article  CAS  Google Scholar 

  • Garro Galvez JM, Fechtal M, Riedl B (1996) Gallic acid as a model of tannins in condensation with formaldehyde. Thermochim Acta 274:149–163. https://doi.org/10.1016/0040-6031(95)02630-4

    Article  CAS  Google Scholar 

  • Ghahri S, Mohebby B (2017) Soybean as adhesive for wood composites: applications and properties. Soybean—the basis of yield, bio-mass and productivity. InTech Publisher, London

    Google Scholar 

  • Gui C, Zhu J, Zhang Z, Liu X (2016) Research progress on formaldehyde-free wood adhesive derived from soy flour. In: Rudawska A (ed) Adhesives—applications and properties . IntechOpen. https://doi.org/10.5772/65502

  • Gupta GK (2009) Development of bark-based environmental-friendly composite panels. Master’s thesis, Faculty of Forestry, University of Toronto, Canada

  • Harkin JM, Rowe JW (1971) Bark and its possible uses. Research Note FPL-091. U.S. Department of Agriculture, Forest Products Laboratory, Madison

    Google Scholar 

  • Hodgson AT, Beal D, Mcilvaine JER (2002) Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house. Indoor Air 12:235–242. https://doi.org/10.1034/j.1600-0668.2002.01129.x

    Article  CAS  PubMed  Google Scholar 

  • IARC (2006) Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. In: Monographs on the Evaluation of carcinogenic risk to humans; world health organization–international agency for research on cancer: Lyon, France, 2006, vol 88, p 478

  • Jahanshaei S, Tabarsa T, Asghari J (2012) Eco-friendly tannin-phenol formaldehyde resin for producing wood composites. Pigm Resin Technol 41(5):296–301

    Article  CAS  Google Scholar 

  • Janiszewska D, Frackowiak I, Mytko K (2016) Exploitation of liquefied wood waste for binding recycled wood particleboards. Holzforschung 70(12):1135–1138. https://doi.org/10.1515/hf-2016-0043

    Article  CAS  Google Scholar 

  • Johns WE, Niazi KA (1980) Effect of pH and buffering capacity of wood on the gelation time of urea-formaldehyde resin. Wood Fiber Sci 12(4):255–263

    CAS  Google Scholar 

  • Kamath YK, Hornby SB, Weigmann HD (1985) Irreversible chemisorption of formaldehyde on cotton cellulose. Textile Res J 55(11):663–666

    Article  CAS  Google Scholar 

  • Kim S (2009) Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresour Technol 100:744–748. https://doi.org/10.1016/j.biortech.2008.06.062

    Article  CAS  PubMed  Google Scholar 

  • Łebkowska M, Załęska-Radziwiłł M, Tabernacka A (2017) Adhesives based on formaldehyde–—environmental problems. BioTechnologia 98(1):53–65

    Article  Google Scholar 

  • Malutan T, Nicu R, Popa VI (2008) Contribution to the study of hydroxymethylation reaction of alkali lignin. BioResources 3(1):13–20

    CAS  Google Scholar 

  • Moubarik A, Allal A, Pizzi A, Charreir B, Carreir F (2010) Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. Eur J Wood Prod 68:427–433. https://doi.org/10.1007/s00107-009-0379-0

    Article  CAS  Google Scholar 

  • Munoz F, Ballerini A, Gacitua W (2013) Variability of physical, morphological and thermal properties of Eucalyptus nitens bark filler. Maderas-Cienc Technol 15(1):17–30. https://doi.org/10.4067/S0718-221X2013005000002

    Article  CAS  Google Scholar 

  • Myers GE (1984) How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. For Prod J 34:35–41

    CAS  Google Scholar 

  • Myers GE (1986) Effects of post-manufacture board treatments on formaldehyde emission: a literature review (1960–1984). For Prod J 36:41–51

    CAS  Google Scholar 

  • Nemli G, Colakoğlu G (2005) Effects of mimosa bark usage on some properties of particleboard. Turk J Agric For 29:227–230

    Google Scholar 

  • Nemli G, Kirci H, Temiz A (2004) Influence of impregnating wood particles with mimosa bark extract on some properties of particleboard. Ind Crop Prod 20:339–344. https://doi.org/10.1016/j.indcrop.2003.11.006

    Article  Google Scholar 

  • Ong HR, Prasad DMR, Khan MR, Rao DS, Jeyaratnam N, Raman DK (2012) Effect of jatropha seed oil meal and rubber seed oil meal as melamine urea formaldehyde adhesive extender on the bonding strength of plywood. J Appl Sci 12:1148–1153. https://doi.org/10.3923/jas.2012.1148.1153

    Article  CAS  Google Scholar 

  • Ozgenc O, Durmaz S, Kustas S (2017) Chemical analysis of tree barks using ATR-FTIR spectroscopy and conventional techniques. BioResources 12(4):9143–9151. https://doi.org/10.15376/biores.12.4.9143-9151

    Article  CAS  Google Scholar 

  • Park BD, Kang EC, Park JY (2008) Thermal curing behavior of modified urea–formaldehyde resin adhesives with two formaldehyde scavengers and their influence on adhesion performance. J Appl Polym Sci 110(3):1573–1580. https://doi.org/10.1002/app.28748

    Article  CAS  Google Scholar 

  • Pasztory Z, Mohacsine IR, Gorbacheva G, Borcsok Z (2016) The utilization of tree bark. BioResources 11(3):7859–7888. https://doi.org/10.15376/biores.11.3.Pasztory

    Article  CAS  Google Scholar 

  • Pásztory Z, Ronyecz Mohácsiné I, Börcsök Z (2017) Investigation of thermal insulation panels made of black locust tree bark. Constr Build Mater 147:733–735. https://doi.org/10.1016/j.conbuildmat.2017.04.204

    Article  Google Scholar 

  • Pedieu R, Riedl B, Pichette A (2008) Properties of white birch (Betula papyrifera) outer bark particleboards with reinforcement of coarse wood particles in the core layer. Ann Forest Sci 65(701):1–9. https://doi.org/10.1051/forest:2008053

    Article  Google Scholar 

  • Pedieu R, Riedl B, Pichette A (2009) Properties of mixed particleboards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibers. Eur J Wood Prod 67:95–101. https://doi.org/10.1007/s00107-008-0297-6

    Article  CAS  Google Scholar 

  • Pizzi A (1994) Advanced Wood Adhesives Technology. CRC Press: Boca Raton, FL, USA, 1994

  • Raquez J–M, Deléglise M, Lacrampe M–F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  • Réh R, Igaz R, Krišťák Ľ, Ružiak I, Gajtanska M, Božíková M, Kučerka M (2019) Functionality of beech bark in adhesive mixtures used in plywood and its effect on the stability associated with material systems. Materials 12:1298

    Article  Google Scholar 

  • Rhazi N, Oumam M, Sesbou A, Hannache H, Bouhtoury FC (2017) Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates. Eur Phys J Appl Phys 78:34813. https://doi.org/10.1051/epjap/2017170067

    Article  CAS  Google Scholar 

  • Roffael E (1982) Die Formaldehydabgabe von Spanplatten und anderen Werkstoffen [The release of formaldehyde from particleboards and other materials]. DRW, Stuttgart

    Google Scholar 

  • Roffael E (2016) Significance of wood extractives for wood bonding. Appl Microbiol Biotechnol 100:1589–1596

    Article  CAS  Google Scholar 

  • Roffael E, Dix B, Okum J (2000) Use of spruce tannin as a binder in particleboards and medium density fiberboards (MDF). Holz Roh Werkst 58:301–305. https://doi.org/10.1007/s001070050432

    Article  CAS  Google Scholar 

  • Rowell RM (2005) Handbook of chemistry and wood composites. CRC Press, Boca Raton, 446 pp

    Book  Google Scholar 

  • Ružiak I, Igaz R, Krišťák L, Réh R, Mitterpach J, Očkajová A, Kučerka M (2017) Influence of urea-formaldehyde adhesive modification with beech bark on chosen properties of plywood. BioResources 12:3250–3264. https://doi.org/10.15376/biores.12.2.3250-3264

    Article  CAS  Google Scholar 

  • Sari B, Ayrilmis N, Nemli G, Baharoğlu M, Gümüşkaya E, Bardak S (2012) Effects of chemical composition of wood and resin type on properties of particleboard. Lignocellulose 1:174–184

    Google Scholar 

  • Sastry GP (1969) The reaction of formaldehyde with spruce lignins. Holzforschung 23(1):15–17

    Article  CAS  Google Scholar 

  • Sedliačik J, Matyašovský J, Šmidriaková M, Sedliačiková M, Jurkovič P (2011) Application of collagen colloid from chrome shavings for innovative polycondensation adhesives. J Am Leather Chem As 106(11):332–340

    Google Scholar 

  • Seifert VK (1956) Über ein neues Verfahren zur Schnellbestimmung der Rein—Cellulose (About a new method for rapid determination of pure cellulose). Das Papier 10(13/14):301–306

    CAS  Google Scholar 

  • Sellers T, Miller GD, Smith W (2005) Tool wear properties of five extender/fillers in adhesive mixes for plywood. For Prod J 55(3):27–31

    CAS  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass: laboratory analytical procedure (LAP). NREL/TP-510-42619. National Renewable Energy Laboratory, CO, Golden

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008b) Determination of ash in biomass. Technical Report NREL/TP-510-42622. National Renewable Energy Laboratory Golden, CO

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of Structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). NREL/TP-510-42618. National Renewable Energy Laboratory, CO, Golden

    Google Scholar 

  • Takagaki A, Fukai K, Nanjo F, Hara Y (2000) Reactivity of green tea catechins with formaldehyde. J Wood Sci 46:334–338

    Article  CAS  Google Scholar 

  • Tanase C, Mocan A, Cosarca S, Gavan A, Nicolescu A, Gheldiu A-M, Vodnar DC, Muntean D-L, Crisan O (2019) Biological and chemical insights of Beech (Fagus sylvatica L.) bark: a source of bioactive compounds with functional properties. Antioxidants 8(9):E417. https://doi.org/10.3390/antiox8090417

    Article  CAS  PubMed  Google Scholar 

  • Tudor EM, Barbu MC, Petutschnigg A, Réh R, Krišťák L (2020) Analysis of Larch-Bark capacity for formaldehyde removal in wood adhesives. Int J Environ Res Public Health 17:764. https://doi.org/10.3390/ijerph17030764

    Article  CAS  PubMed Central  Google Scholar 

  • Umemura K, Ueda T, Munawar SS, Kawai S (2012) Application of citric acid as natural adhesive for wood. J Appl Polym Sci 123(4):1991–1996. https://doi.org/10.1002/app.34708

    Article  CAS  Google Scholar 

  • Vazquez G, Freire S, Rodriguez–Bona C, Gonzalez J, Antorrena G (1999) Structures, and reactivities with formaldehyde, of some acetosolv pine lignins. J Wood Chem Technol 19(4):357–378

    Article  CAS  Google Scholar 

  • Wise LE, Murphy M, D’addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122(2):35–43

    CAS  Google Scholar 

  • Yilgor N, Unsal O, Kartal SN (2001) Physical, mechanical, and chemical properties of steamed beech wood. Forest Prod J 51(11/12):89–93

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Slovak Academic Information Agency; and the Slovak Research and Development Agency under the contracts no. APVV-14-0506, APVV-16-0177, APVV-17-0583, APVV-18-0378; and ITMS project code: 313011T720 “LignoPro”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Bekhta.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhta, P., Sedliačik, J., Noshchenko, G. et al. Characteristics of beech bark and its effect on properties of UF adhesive and on bonding strength and formaldehyde emission of plywood panels. Eur. J. Wood Prod. 79, 423–433 (2021). https://doi.org/10.1007/s00107-020-01632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-020-01632-8

Navigation