Skip to main content

Advertisement

Log in

Comparison of patient setup accuracy for optical surface-guided and X-ray-guided imaging with respect to the impact on intracranial stereotactic radiotherapy

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work is to estimate the patient positioning accuracy of a surface-guided radiation therapy (SGRT) system using an optical surface scanner compared to an X‑ray-based imaging system (IGRT) with respect to their impact on intracranial stereotactic radiotherapy (SRT) and intracranial stereotactic radiosurgery (SRS).

Methods

Patient positioning data, both acquired with SGRT and IGRT systems at the same linacs, serve as a basis for determination of positioning accuracy. A total of 35 patients with two different open face masks (578 datasets) were positioned using X‑ray stereoscopic imaging and the patient position inside the open face mask was recorded using SGRT. The measurement accuracy of the SGRT system (in a “standard” and an SRS mode with higher resolution) was evaluated using both IGRT and SGRT patient positioning datasets taking into account the measurement errors of the X‑ray system. Based on these clinically measured datasets, the positioning accuracy was estimated using Monte Carlo (MC) simulations. The relevant evaluation criterion, as standard of practice in cranial SRT, was the 95th percentile.

Results

The interfractional measurement displacement vector of the SGRT system, σSGRT, in high resolution mode was estimated at 2.5 mm (68th percentile) and 5 mm (95th percentile). If the standard resolution was used, σSGRT increased by about 20%. The standard deviation of the axis-related σSGRT of the SGRT system ranged between 1.5 and 1.8 mm interfractionally and 0.5 and 1.0 mm intrafractionally. The magnitude of σSGRT is mainly due to the principle of patient surface scanning and not due to technical limitations or vendor-specific issues in software or hardware. Based on the resulting σSGRT, MC simulations served as a measure for the positioning accuracy for non-coplanar couch rotations. If an SGRT system is used as the only patient positioning device in non-coplanar fields, interfractional positioning errors of up to 6 mm and intrafractional errors of up to 5 mm cannot be ruled out. In contrast, MC simulations resulted in a positioning error of 1.6 mm (95th percentile) using the IGRT system. The cause of positioning errors in the SGRT system is mainly a change in the facial surface relative to a defined point in the brain.

Conclusion

In order to achieve the necessary geometric accuracy in cranial stereotactic radiotherapy, use of an X‑ray-based IGRT system, especially when treating with non-coplanar couch angles, is highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kuntz L, Le Fèvre C, Jarnet D et al (2022) Local recurrence and cerebral progression-free survival after multiple sessions of stereotactic radiotherapy of brain metastases: a retrospective study of 184 patients. Strahlenther Onkol 198(6):527–536. https://doi.org/10.1007/s00066-022-01913-6

    Article  PubMed  Google Scholar 

  2. Steinmann D, Vordermark D, Gerstenberg W et al (2020) Quality of life in patients with limited (1–3) brain metastases undergoing stereotactic or whole brain radiotherapy. Strahlenther Onkol 196(1):48–57. https://doi.org/10.1007/s00066-019-01506-w

    Article  PubMed  Google Scholar 

  3. Lai J, Liu J, Zhao J et al (2021) Effective method to reduce the normal brain dose in single-isocentre hypofractionated stereotactic radiotherapy for multiple brain metastases. Strahlenther Onkol 197(7):592–600. https://doi.org/10.1007/s00066-021-01757-6

    Article  PubMed  Google Scholar 

  4. Rades D, Hornung D, Blanck O et al (2014) Stereotactic radiosurgery for newly diagnosed brain metastases. Strahlenther Onkol 190(9):786–791. https://doi.org/10.1007/s00066-014-0625-1

    Article  PubMed  Google Scholar 

  5. Pallotta S, Vanzi E, Simontacchi G et al (2015) Surface imaging, portal imaging, and skin marker set-up vs. CBCT for radiotherapy of the thorax and pelvis. Strahlenther Onkol 191(9):726–733. https://doi.org/10.1007/s00066-015-0861-z

    Article  PubMed  Google Scholar 

  6. Li S, Geng J, Williams J et al. (2000) A novel 3D-video-based refixation technique for fractionated stereotactic radiotherapy. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143). IEEE, p 2693

  7. Nguyen D, Farah J, Barbet N et al (2020) Commissioning and performance testing of the first prototype of AlignRT InBore™ a Halcyon™ and Ethos™-dedicated surface guided radiation therapy platform. Phys Med 80:159–166. https://doi.org/10.1016/j.ejmp.2020.10.024

    Article  PubMed  Google Scholar 

  8. Freislederer P, Kügele M, Öllers M et al (2020) Recent advances in Surface Guided Radiation Therapy. Radiat Oncol. https://doi.org/10.1186/s13014-020-01629-w

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hoisak JD, Pawlicki T (2018) The Role of Optical Surface Imaging Systems in Radiation Therapy. Semin Radiat Oncol 28(3):185–193. https://doi.org/10.1016/j.semradonc.2018.02.003

    Article  PubMed  Google Scholar 

  10. Li Z, Xiao Q, Li G et al (2021) Performance assessment of surface-guided radiation therapy and patient setup in head-and-neck and breast cancer patients based on statistical process control. Phys Medica 89:243–249. https://doi.org/10.1016/j.ejmp.2021.08.007

    Article  Google Scholar 

  11. Laaksomaa M, Sarudis S, Rossi M et al (2019) AlignRT® and Catalyst™ in whole-breast radiotherapy with DIBH: Is IGRT still needed? J Appl Clin Med Phys 20(3):97–104. https://doi.org/10.1002/acm2.12553

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stanley DN, McConnell KA, Kirby N et al (2017) Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis. J Appl Clin Med Phys 18(6):58–61. https://doi.org/10.1002/acm2.12183

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rigley J, Robertson P, Scattergood L (2020) Radiotherapy without tattoos: Could this work? Radiography 26(4):288–293. https://doi.org/10.1016/j.radi.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  14. Carl G, Reitz D, Schönecker S et al (2018) Optical Surface Scanning for Patient Positioning in Radiation Therapy: A Prospective Analysis of 1902 Fractions. Technol Cancer Res Treat 17:153303381880600. https://doi.org/10.1177/1533033818806002

    Article  Google Scholar 

  15. Kügele M, Mannerberg A, Nørring Bekke S et al (2019) Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. J Appl Clin Med Phys 20(9):61–68. https://doi.org/10.1002/acm2.12700

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hattel SH, Andersen PA, Wahlstedt IH et al (2019) Evaluation of setup and intrafraction motion for surface guided whole-breast cancer radiotherapy. J Appl Clin Med Phys 20(6):39–44. https://doi.org/10.1002/acm2.12599

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pazos M, Walter F, Reitz D et al (2019) Impact of surface-guided positioning on the use of portal imaging and initial set-up duration in breast cancer patients. Strahlenther Onkol 195(11):964–971. https://doi.org/10.1007/s00066-019-01494-x

    Article  PubMed  Google Scholar 

  18. Reitz D, Walter F, Schönecker S et al (2020) Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer. Radiat Oncol. https://doi.org/10.1186/s13014-020-01572-w

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heinzerling JH, Hampton CJ, Robinson M et al (2020) Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen. J Appl Clin Med Phys 21(5):48–55. https://doi.org/10.1002/acm2.12852

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sarudis S, Karlsson A, Bäck A (2021) Surface guided frameless positioning for lung stereotactic body radiation therapy. J Appl Clin Med Phys 22(9):215–226. https://doi.org/10.1002/acm2.13370

    Article  PubMed  PubMed Central  Google Scholar 

  21. Covington EL, Popple RA (2021) A Low-Cost Method to Assess the Performance of Surface Guidance Imaging Systems at Non-Zero Couch Angles. Cureus. https://doi.org/10.7759/cureus.14278

    Article  PubMed  PubMed Central  Google Scholar 

  22. Covington EL, Fiveash JB, Wu X et al (2019) Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. J Appl Clin Med Phys 20(6):91–98. https://doi.org/10.1002/acm2.12611

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao B, Maquilan G, Jiang S et al (2018) Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. J Appl Clin Med Phys 19(1):17–24. https://doi.org/10.1002/acm2.12211

    Article  CAS  PubMed  Google Scholar 

  24. Lee SK, Huang S, Zhang L et al (2021) Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys 22(5):48–57. https://doi.org/10.1002/acm2.13241

    Article  PubMed  PubMed Central  Google Scholar 

  25. Covington EL, Stanley DN, Fiveash JB et al (2020) Surface guided imaging during stereotactic radiosurgery with automated delivery. J Appl Clin Med Phys 21(12):90–95. https://doi.org/10.1002/acm2.13066

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peng JL, Kahler D, Li JG et al (2010) Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys 37(10):5421–5433. https://doi.org/10.1118/1.3483783

    Article  PubMed  Google Scholar 

  27. Perks JR, Jalali R, Cosgrove VP et al. (1999) Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms. International Journal of Radiation Oncology*Biology*Physics 45(2): 507–513. https://doi.org/10.1016/S0360-3016(99)00156‑X

  28. Smyth G, Evans PM, Bamber JC et al (2019) Recent developments in non-coplanar radiotherapy. BJR 92(1097):20180908. https://doi.org/10.1259/bjr.20180908

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang S, Yang R, Wang X (2019) Dosimetric quality and delivery efficiency of robotic radiosurgery for brain metastases: Comparison with C‑arm linear accelerator based plans. J Appl Clin Med Phys 20(11):104–110. https://doi.org/10.1002/acm2.12746

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schmitt D, Blanck O, Gauer T et al (2020) Technological quality requirements for stereotactic radiotherapy. Strahlenther Onkol 196(5):421–443. https://doi.org/10.1007/s00066-020-01583-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. International Journal of Radiation Oncology*Biology*Physics 14(2): 373–381. https://doi.org/10.1016/0360-3016(88)90446‑4

  32. Verellen D, Linthout N, Bel A et al. (1999) Assessment of the uncertainties in dose delivery of a commercial system for linac-based stereotactic radiosurgery. International Journal of Radiation Oncology*Biology*Physics 44(2): 421–433. https://doi.org/10.1016/S0360-3016(99)00020‑6

  33. Takakura T, Mizowaki T, Nakata M et al (2010) The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system. Phys Med Biol 55(1):1–10. https://doi.org/10.1088/0031-9155/55/1/001

    Article  CAS  PubMed  Google Scholar 

  34. Bry V, Licon AL, McCulloch J et al (2021) Quantifying false positional corrections due to facial motion using SGRT with open-face Masks. J Appl Clin Med Phys 22(4):172–183. https://doi.org/10.1002/acm2.13170

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lawrence YR, Li XA, el Naqa I et al (2010) Radiation Dose-Volume Effects in the. Brain Int J Radiat Oncol 76(3):20–S27. https://doi.org/10.1016/j.ijrobp.2009.02.091

    Article  Google Scholar 

  36. Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. https://doi.org/10.1186/1748-717X-6-48

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jhaveri J, Chowdhary M, Zhang X et al (2019) Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. JNS 130(3):797–803. https://doi.org/10.3171/2017.9.JNS171735

    Article  Google Scholar 

Download references

Funding

The investigation was supported by Brainlab AG and C‑RAD AB. Brainlab contributed financially to the additional costs of the open mask project and C‑RAD provided the SRS module for the CatalystTM HD free of charge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jaschik.

Ethics declarations

Conflict of interest

M. Schöpe, J. Sahlmann, S. Jaschik, A. Findeisen and G. Klautke declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

66_2023_2170_MOESM1_ESM.pdf

Comparison of patient setup accuracy for optical surface-guided and X‑ray-guided imaging with respect to impact on intracranial stereotactic radiotherapy

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöpe, M., Sahlmann, J., Jaschik, S. et al. Comparison of patient setup accuracy for optical surface-guided and X-ray-guided imaging with respect to the impact on intracranial stereotactic radiotherapy. Strahlenther Onkol 200, 60–70 (2024). https://doi.org/10.1007/s00066-023-02170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02170-x

Keywords

Navigation