Skip to main content

Advertisement

Log in

Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vinod SK, Hau E (2020) Radiotherapy treatment for lung cancer: current status and future directions. Respirology 25(2):61–71. https://doi.org/10.1111/resp.13870

    Article  PubMed  Google Scholar 

  2. Shirvani SM, Huntzinger CJ, Melcher T, Olcott PD, Voronenko Y, Bartlett-Roberto J, Mazin S (2021) Biology-guided radiotherapy: redefining the role of radiotherapy in metastatic cancer. Br J Radiol 94:20200873. https://doi.org/10.1259/bjr.20200873

    Article  PubMed  Google Scholar 

  3. Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF (2022) The footprint of exosomes in the radiation-induced bystander effects. Bioengineering. https://doi.org/10.3390/bioengineering9060243

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jabbari N, Karimipour M, Khaksar M, Akbariazar E, Heidarzadeh M, Mojarad B, Aftab H, Rahbarghazi R, Rezaie J (2020) Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 35:531–545. https://doi.org/10.1007/s10103-019-02880-8

    Article  PubMed  Google Scholar 

  5. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D (2015) The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 41:503–510. https://doi.org/10.1016/j.ctrv.2015.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hargitai R, Kis D, Persa E, Szatmari T, Safrany G, Lumniczky K (2021) Oxidative stress and gene expression modifications mediated by extracellular vesicles: an in vivo study of the radiation-induced bystander effect. Antioxidants. https://doi.org/10.3390/antiox10020156

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kis D, Csordas IB, Persa E, Jezso B, Hargitai R, Szatmari T, Sandor N, Kis E, Balazs K, Safrany G et al (2022) Extracellular vesicles derived from bone marrow in an early stage of ionizing radiation damage are able to induce bystander responses in the bone marrow. Cells. https://doi.org/10.3390/cells11010155

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kis D, Persa E, Szatmari T, Antal L, Bota A, Csordas IB, Hargitai R, Jezso B, Kis E, Mihaly J et al (2020) The effect of ionising radiation on the phenotype of bone marrow-derived extracellular vesicles. Br J Radiol 93:20200319. https://doi.org/10.1259/bjr.20200319

    Article  PubMed  PubMed Central  Google Scholar 

  9. Szatmari T, Kis D, Bogdandi EN, Benedek A, Bright S, Bowler D, Persa E, Kis E, Balogh A, Naszalyi LN et al (2017) Extracellular vesicles mediate radiation-induced systemic bystander signals in the bone marrow and spleen. Front Immunol 8:347. https://doi.org/10.3389/fimmu.2017.00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szatmari T, Persa E, Kis E, Benedek A, Hargitai R, Safrany G, Lumniczky K (2018) Extracellular vesicles mediate low dose ionizing radiation-induced immune and inflammatory responses in the blood. Int J Radiat Biol. https://doi.org/10.1080/09553002.2018.1450533

    Article  PubMed  Google Scholar 

  11. Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG (2019) Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance. Cancers. https://doi.org/10.3390/cancers11111789

    Article  PubMed  PubMed Central  Google Scholar 

  12. Szatmari T, Hargitai R, Safrany G, Lumniczky K (2019) Extracellular vesicles in modifying the effects of ionizing radiation. Int J Mol Sci. https://doi.org/10.3390/ijms20225527

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jelonek K, Wojakowska A, Marczak L, Muer A, Tinhofer-Keilholz I, Lysek-Gladysinska M, Widlak P, Pietrowska M (2015) Ionizing radiation affects protein composition of exosomes secreted in vitro from head and neck squamous cell carcinoma. Acta Biochim Pol 62:265–272. https://doi.org/10.18388/abp.2015_970

    Article  CAS  PubMed  Google Scholar 

  14. Hurwitz MD, Kaur P, Nagaraja GM, Bausero MA, Manola J, Asea A (2010) Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer. Radiother Oncol 95:350–358. https://doi.org/10.1016/j.radonc.2010.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, Tapio S, Merl-Pham J, Huber SM, Edalat L et al (2017) Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep 7:12423. https://doi.org/10.1038/s41598-017-12403-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goliwas KF, Ashraf HM, Wood AM, Wang Y, Hough KP, Bodduluri S, Athar M, Berry JL, Ponnazhagan S, Thannickal VJ et al (2021) Extracellular vesicle mediated tumor-stromal crosstalk within an engineered lung cancer model. Front Oncol 11:654922. https://doi.org/10.3389/fonc.2021.654922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naito Y, Yoshioka Y, Ochiya T (2022) Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles. Cancer Cell Int 22:367. https://doi.org/10.1186/s12935-022-02784-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, Moertl S (2016) Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS ONE 11:e152213. https://doi.org/10.1371/journal.pone.0152213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ, Camphausen KA (2013) Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 6:638–648. https://doi.org/10.1593/tlo.13640

    Article  PubMed  PubMed Central  Google Scholar 

  20. Payton C, Pang LY, Gray M, Argyle DJ (2021) Exosomes derived from radioresistant breast cancer cells promote therapeutic resistance in naive recipient cells. J Pers Med. https://doi.org/10.3390/jpm11121310

    Article  PubMed  PubMed Central  Google Scholar 

  21. Milman N, Ginini L, Gil Z (2019) Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat 45:1–12. https://doi.org/10.1016/j.drup.2019.07.003

    Article  PubMed  Google Scholar 

  22. Shao C, Stewart V, Folkard M, Michael BD, Prise KM (2003) Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 63:8437–8442

    CAS  PubMed  Google Scholar 

  23. Baixauli F, Lopez-Otin C, Mittelbrunn M (2014) Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 5:403. https://doi.org/10.3389/fimmu.2014.00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C et al (2017) Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 8:15287. https://doi.org/10.1038/ncomms15287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hood JL, Wickline SA (2012) A systematic approach to exosome-based translational nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:458–467. https://doi.org/10.1002/wnan.1174

    Article  CAS  PubMed  Google Scholar 

  26. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841:108–120. https://doi.org/10.1016/j.bbalip.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  27. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688. https://doi.org/10.1007/s00018-011-0689-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hurley JH, Boura E, Carlson LA, Rozycki B (2010) Membrane budding. Cell 143:875–887. https://doi.org/10.1016/j.cell.2010.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948. https://doi.org/10.1016/j.bbagen.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  31. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  32. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593. https://doi.org/10.1038/nri2567

    Article  CAS  PubMed  Google Scholar 

  33. Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55. https://doi.org/10.1038/nrc2543

    Article  CAS  PubMed  Google Scholar 

  34. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  35. Jelonek K, Widlak P, Pietrowska M (2016) The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett 23:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197

    Article  CAS  PubMed  Google Scholar 

  37. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611. https://doi.org/10.1242/jcs.064386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495. https://doi.org/10.1038/sj.leu.2404296

    Article  CAS  PubMed  Google Scholar 

  39. Holmgren L, Szeles A, Rajnavolgyi E, Folkman J, Klein G, Ernberg I, Falk KI (1999) Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93:3956–3963

    Article  CAS  PubMed  Google Scholar 

  40. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, Holmgren L (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A 98:6407–6411. https://doi.org/10.1073/pnas.101129998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karlsson M, Lundin S, Dahlgren U, Kahu H, Pettersson I, Telemo E (2001) “Tolerosomes” are produced by intestinal epithelial cells. Eur J Immunol 31:2892–2900

    Article  CAS  PubMed  Google Scholar 

  42. Teo MT, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, Hall J, Landi S, Bishop DT, Kiltie AE (2012) The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 33:581–586. https://doi.org/10.1093/carcin/bgr300

    Article  CAS  PubMed  Google Scholar 

  43. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin‑1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858. https://doi.org/10.1242/jcs.02439

    Article  CAS  PubMed  Google Scholar 

  44. Di Daniele A, Antonucci Y, Campello S (2022) Migrasomes, new vescicles as Hansel and Gretel white pebbles? Biol Direct 17:8. https://doi.org/10.1186/s13062-022-00321-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, Chen L, Yan X, Du Y, Yu L (2015) Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res 25:24–38. https://doi.org/10.1038/cr.2014.135

    Article  CAS  PubMed  Google Scholar 

  46. Meehan B, Rak J, Di Vizio D (2016) Oncosomes—large and small: what are they, where they came from? J Extracell Vesicles 5:33109. https://doi.org/10.3402/jev.v5.33109

    Article  PubMed  Google Scholar 

  47. Jaiswal R, Sedger LM (2019) Intercellular vesicular transfer by exosomes, microparticles and oncosomes—implications for cancer biology and treatments. Front Oncol 9:125. https://doi.org/10.3389/fonc.2019.00125

    Article  PubMed  PubMed Central  Google Scholar 

  48. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624. https://doi.org/10.1038/ncb1725

    Article  CAS  PubMed  Google Scholar 

  49. Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M et al (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6:11327–11341. https://doi.org/10.18632/oncotarget.3598

    Article  PubMed  PubMed Central  Google Scholar 

  50. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, Mulholland D, Rotinen M, Hager MH, Insabato L et al (2012) Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181:1573–1584. https://doi.org/10.1016/j.ajpath.2012.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668. https://doi.org/10.1111/j.1600-0854.2011.01225.x

    Article  CAS  PubMed  Google Scholar 

  52. Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzas EI, Di Vizio D, Falcon-Perez JM, Gardiner C, Hochberg F, Kurochkin IV et al (2017) Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles 6:1396823. https://doi.org/10.1080/20013078.2017.1396823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Witwer KW, Goberdhan DC, O’Driscoll L, Thery C, Welsh JA, Blenkiron C, Buzas EI, Di Vizio D, Erdbrugger U, Falcon-Perez JM et al (2021) Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles. J of Extracellular Vesicle 10:e12182. https://doi.org/10.1002/jev2.12182

    Article  CAS  Google Scholar 

  54. Kwok ZH, Wang C, Jin Y (2021) Extracellular vesicle transportation and uptake by recipient cells: a critical process to regulate human diseases. Processes. https://doi.org/10.3390/pr9020273

    Article  PubMed  Google Scholar 

  55. Soekmadji C, Hill AF, Wauben MH, Buzas EI, Di Vizio D, Gardiner C, Lotvall J, Sahoo S, Witwer KW (2018) Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey. J of Extracellular Vesicle 7:1535745. https://doi.org/10.1080/20013078.2018.1535745

    Article  CAS  Google Scholar 

  56. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208. https://doi.org/10.1007/s00018-017-2595-9

    Article  CAS  PubMed  Google Scholar 

  57. Beer L, Zimmermann M, Mitterbauer A, Ellinger A, Gruber F, Narzt MS, Zellner M, Gyongyosi M, Madlener S, Simader E et al (2015) Analysis of the secretome of apoptotic peripheral blood mononuclear cells: impact of released proteins and exosomes for tissue regeneration. Sci Rep 5:16662. https://doi.org/10.1038/srep16662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68:7864–7871. https://doi.org/10.1158/0008-5472.CAN-07-6538

    Article  CAS  PubMed  Google Scholar 

  59. Bhatta B, Luz I, Krueger C, Teo FX, Lane DP, Sabapathy K, Cooks T (2021) Cancer cells shuttle extracellular vesicles containing oncogenic mutant p53 proteins to the tumor microenvironment. Cancers. https://doi.org/10.3390/cancers13122985

    Article  PubMed  PubMed Central  Google Scholar 

  60. Taylor DD, Gercel-Taylor C (2005) Tumour-derived exosomes and their role in cancer-associated T‑cell signalling defects. Br J Cancer 92:305–311. https://doi.org/10.1038/sj.bjc.6602316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126:1208–1215. https://doi.org/10.1172/JCI81135

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moller A, Lobb RJ (2020) The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 20:697–709. https://doi.org/10.1038/s41568-020-00299-w

    Article  CAS  PubMed  Google Scholar 

  63. Ortiz A (2021) Extracellular vesicles in cancer progression. Semin Cancer Biol 76:139–142. https://doi.org/10.1016/j.semcancer.2021.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146. https://doi.org/10.1016/j.semcancer.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  65. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O’Connor ST, Li S, Chin AR et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–194. https://doi.org/10.1038/ncb3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li J, Yuan H, Xu H, Zhao H, Xiong N (2020) Hypoxic cancer-secreted exosomal miR-182-5p promotes glioblastoma angiogenesis by targeting Kruppel-like factor 2 and 4. Mol Cancer Res 18:1218–1231. https://doi.org/10.1158/1541-7786.MCR-19-0725

    Article  CAS  PubMed  Google Scholar 

  68. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421. https://doi.org/10.1186/1471-2407-12-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matsuura Y, Wada H, Eguchi H, Gotoh K, Kobayashi S, Kinoshita M, Kubo M, Hayashi K, Iwagami Y, Yamada D et al (2019) Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig Dis Sci 64:792–802. https://doi.org/10.1007/s10620-018-5380-1

    Article  CAS  PubMed  Google Scholar 

  70. Patton MC, Zubair H, Khan MA, Singh S, Singh AP (2020) Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival. J Cell Biochem 121:828–839. https://doi.org/10.1002/jcb.29328

    Article  CAS  PubMed  Google Scholar 

  71. Xia X, Wang S, Ni B, Xing S, Cao H, Zhang Z, Yu F, Zhao E, Zhao G (2020) Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1alpha positive feedback loop. Oncogene 39:6231–6244. https://doi.org/10.1038/s41388-020-01425-6

    Article  CAS  PubMed  Google Scholar 

  72. Ren R, Sun H, Ma C, Liu J, Wang H (2019) Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci 9:62. https://doi.org/10.1186/s13578-019-0325-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G (2015) Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 54:554–565. https://doi.org/10.1002/mc.22124

    Article  CAS  PubMed  Google Scholar 

  74. Thakur A, Qiu G, Xu C, Han X, Yang T, Ng SP, Chan KWY, Wu CML, Lee Y (2020) Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma. Sci Adv 6:eaaz6119. https://doi.org/10.1126/sciadv.aaz6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He G, Peng X, Wei S, Yang S, Li X, Huang M, Tang S, Jin H, Liu J, Zhang S et al (2022) Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol Cancer 21:19. https://doi.org/10.1186/s12943-021-01440-5

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G (2018) Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 177:139–148. https://doi.org/10.1016/j.biomaterials.2018.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222. https://doi.org/10.1074/jbc.M109.041152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A, Marra M, Lugini L, Logozzi M, Lozupone F et al (2004) Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 96:1702–1713. https://doi.org/10.1093/jnci/djh305

    Article  CAS  PubMed  Google Scholar 

  79. Fuentes P, Sese M, Guijarro PJ, Emperador M, Sanchez-Redondo S, Peinado H, Hummer S, Ramon YCS (2020) ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun 11:4261. https://doi.org/10.1038/s41467-020-18081-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kelemen A, Carmi I, Oszvald A, Lorincz P, Petovari G, Tolgyes T, Dede K, Bursics A, Buzas EI, Wiener Z (2021) IFITM1 expression determines extracellular vesicle uptake in colorectal cancer. Cell Mol Life Sci 78:7009–7024. https://doi.org/10.1007/s00018-021-03949-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Toda Y, Takata K, Nakagawa Y, Kawakami H, Fujioka S, Kobayashi K, Hattori Y, Kitamura Y, Akaji K, Ashihara E (2015) Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components. Biochem Biophys Res Commun 456:768–773. https://doi.org/10.1016/j.bbrc.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  82. Hazan-Halevy I, Rosenblum D, Weinstein S, Bairey O, Raanani P, Peer D (2015) Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B‑lymphocytes. Cancer Lett 364:59–69. https://doi.org/10.1016/j.canlet.2015.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Linxweiler J, Kolbinger A, Himbert D, Zeuschner P, Saar M, Stockle M, Junker K (2021) Organ-specific uptake of extracellular vesicles secreted by urological cancer cells. Cancers. https://doi.org/10.3390/cancers13194937

    Article  PubMed  PubMed Central  Google Scholar 

  84. Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108. https://doi.org/10.1186/1471-2407-11-108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xi XM, Xia SJ, Lu R (2021) Drug loading techniques for exosome-based drug delivery systems. Pharmazie 76:61–67. https://doi.org/10.1691/ph.2021.0128

    Article  CAS  PubMed  Google Scholar 

  86. Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M (2015) Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release 220:727–737. https://doi.org/10.1016/j.jconrel.2015.09.031

    Article  CAS  PubMed  Google Scholar 

  87. Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV, Batrakova EV (2018) Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine 14:195–204. https://doi.org/10.1016/j.nano.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  88. Al Faruque H, Choi ES, Kim JH, Kim E (2022) Enhanced effect of autologous EVs delivering paclitaxel in pancreatic cancer. J Control Release 347:330–346. https://doi.org/10.1016/j.jconrel.2022.05.012

    Article  CAS  PubMed  Google Scholar 

  89. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083

    Article  CAS  PubMed  Google Scholar 

  90. Gehrmann U, Naslund TI, Hiltbrunner S, Larssen P, Gabrielsson S (2014) Harnessing the exosome-induced immune response for cancer immunotherapy. Semin Cancer Biol 28:58–67. https://doi.org/10.1016/j.semcancer.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  91. Shi X, Cheng Q, Hou T, Han M, Smbatyan G, Lang JE, Epstein AL, Lenz HJ, Zhang Y (2020) Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol Ther 28:536–547. https://doi.org/10.1016/j.ymthe.2019.11.020

    Article  CAS  PubMed  Google Scholar 

  92. Ruiss R, Jochum S, Mocikat R, Hammerschmidt W, Zeidler R (2011) EBV-gp350 confers B‑cell tropism to tailored exosomes and is a neo-antigen in normal and malignant B cells—a new option for the treatment of B‑CLL. PLoS One 6:e25294. https://doi.org/10.1371/journal.pone.0025294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dellar ER, Hill C, Melling GE, Carter DRF, Baena-Lopez L (2022) Unpacking extracellular vesicles: RNA cargo loading and function. J Extracell Biol. https://doi.org/10.1002/jex2.40

    Article  Google Scholar 

  94. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769. https://doi.org/10.1038/cr.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abramowicz A, Widlak P, Pietrowska M (2019) Different types of cellular stress affect the proteome composition of small extracellular vesicles: a mini review. Proteomes. https://doi.org/10.3390/proteomes7020023

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pizzinat N, Ong-Meang V, Bourgailh-Tortosa F, Blanzat M, Perquis L, Cussac D, Parini A, Poinsot V (2020) Extracellular vesicles of MSCs and cardiomyoblasts are vehicles for lipid mediators. Biochimie 178:69–80. https://doi.org/10.1016/j.biochi.2020.07.013

    Article  CAS  PubMed  Google Scholar 

  97. He C, Li L, Wang L, Meng W, Hao Y, Zhu G (2021) Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med 18:21–33. https://doi.org/10.20892/j.issn.2095-3941.2020.0150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. https://doi.org/10.1038/ncomms1285

    Article  CAS  PubMed  Google Scholar 

  99. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  100. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, Deng Z, Kumar A, Zhang L, Merchant ML et al (2017) MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8:14448. https://doi.org/10.1038/ncomms14448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A, Tripodi M (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep 17:799–808. https://doi.org/10.1016/j.celrep.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  102. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. https://doi.org/10.1038/ncomms3980

    Article  CAS  PubMed  Google Scholar 

  103. McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, Patton JG, Weaver AM (2016) KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep 15:978–987. https://doi.org/10.1016/j.celrep.2016.03.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lu P, Li H, Li N, Singh RN, Bishop CE, Chen X, Lu B (2017) MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS ONE 12:e185992. https://doi.org/10.1371/journal.pone.0185992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin F, Zeng Z, Song Y, Li L, Wu Z, Zhang X, Li Z, Ke X, Hu X (2019) YBX‑1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res Ther 10:263. https://doi.org/10.1186/s13287-019-1377-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martins-Marques T, Costa MC, Catarino S, Simoes I, Aasen T, Enguita FJ, Girao H (2022) Cx43-mediated sorting of miRNAs into extracellular vesicles. EMBO Rep 23:e54312. https://doi.org/10.15252/embr.202154312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee H, Li C, Zhang Y, Zhang D, Otterbein LE, Jin Y (2019) Caveolin‑1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J Exp Med 216:2202–2220. https://doi.org/10.1084/jem.20182313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Si Y, Liu F, Wang D, Fang C, Tang X, Guo B, Shi Z, Dong Z, Guo D, Yue J et al (2021) Exosomal transfer of miR-185 is controlled by hnRNPA2B1 and impairs re-endothelialization after vascular injury. Front Cell Dev Biol 9:619444. https://doi.org/10.3389/fcell.2021.619444

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li C, Qin F, Wang W, Ni Y, Gao M, Guo M, Sun G (2021) hnRNPA2B1-mediated extracellular vesicles sorting of miR-122-5p potentially promotes lung cancer progression. Int J Mol Sci. https://doi.org/10.3390/ijms222312866

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859. https://doi.org/10.1074/jbc.M112.446831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446. https://doi.org/10.1016/j.celrep.2014.07.035

    Article  CAS  PubMed  Google Scholar 

  112. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766. https://doi.org/10.1182/blood-2011-02-338004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yentrapalli R, Merl-Pham J, Azimzadeh O, Mutschelknaus L, Peters C, Hauck SM, Atkinson MJ, Tapio S, Moertl S (2017) Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. Int J Radiat Biol 93:569–580. https://doi.org/10.1080/09553002.2017.1294772

    Article  CAS  PubMed  Google Scholar 

  114. Abramowicz A, Wojakowska A, Marczak L, Lysek-Gladysinska M, Smolarz M, Story MD, Polanska J, Widlak P, Pietrowska M (2019) Ionizing radiation affects the composition of the proteome of extracellular vesicles released by head-and-neck cancer cells in vitro. J Radiat Res 60:289–297. https://doi.org/10.1093/jrr/rrz001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Malla B, Aebersold DM, Dal Pra A (2018) Protocol for serum exosomal miRNAs analysis in prostate cancer patients treated with radiotherapy. J Transl Med 16:223. https://doi.org/10.1186/s12967-018-1592-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. An M, Lohse I, Tan Z, Zhu J, Wu J, Kurapati H, Morgan MA, Lawrence TS, Cuneo KC, Lubman DM (2017) Quantitative proteomic analysis of serum exosomes from patients with locally advanced pancreatic cancer undergoing chemoradiotherapy. J Proteome Res 16:1763–1772. https://doi.org/10.1021/acs.jproteome.7b00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu Q, Li P, Weng M, Wu S, Zhang Y, Chen X, Zhang Q, Shen G, Ding X, Fu S (2018) Nano-vesicles are a potential tool to monitor therapeutic efficacy of carbon Ion radiotherapy in prostate cancer. J Biomed Nanotechnol 14:168–178. https://doi.org/10.1166/jbn.2018.2503

    Article  CAS  PubMed  Google Scholar 

  118. Kulkarni S, Koller A, Mani KM, Wen R, Alfieri A, Saha S, Wang J, Patel P, Bandeira N, Guha C et al (2016) Identifying urinary and serum exosome biomarkers for radiation exposure using a data dependent acquisition and SWATH-MS combined workflow. Int J Radiat Oncol Biol Phys 96:566–577. https://doi.org/10.1016/j.ijrobp.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247. https://doi.org/10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  120. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875. https://doi.org/10.1074/jbc.C113.532267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Waldenström A, Gennebäck N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653. https://doi.org/10.1371/journal.pone.0034653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4. https://doi.org/10.1007/s00702-009-0288-8

    Article  CAS  PubMed  Google Scholar 

  123. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180. https://doi.org/10.1038/ncomms1180

    Article  CAS  PubMed  Google Scholar 

  124. Cambier L, Stachelek K, Triska M, Jubran R, Huang M, Li W, Zhang J, Li J, Cobrinik D (2021) Extracellular vesicle-associated repetitive element DNAs as candidate osteosarcoma biomarkers. Sci Rep 11:94. https://doi.org/10.1038/s41598-020-77398-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vagner T, Spinelli C, Minciacchi VR, Balaj L, Zandian M, Conley A, Zijlstra A, Freeman MR, Demichelis F, De S et al (2018) Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles 7:1505403. https://doi.org/10.1080/20013078.2018.1505403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, Morey R, Liu J, Roszik J, Clise-Dwyer K et al (2019) Mechanisms of nuclear content loading to exosomes. Sci Adv 5:eaax8849. https://doi.org/10.1126/sciadv.aax8849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, Martín-Cófreces NB, Jaso-Tamame Á et al (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 9:2658. https://doi.org/10.1038/s41467-018-05077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N, Brown D, Russo LM (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78:191–199. https://doi.org/10.1038/ki.2010.106

    Article  PubMed  PubMed Central  Google Scholar 

  129. Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, Grundhoff A, Brunswig-Spickenheier B, Alawi M, Lange C (2016) Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS ONE 11:e163665. https://doi.org/10.1371/journal.pone.0163665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Németh A, Orgovan N, Sódar BW, Osteikoetxea X, Pálóczi K, Szabó-Taylor K, Vukman KV, Kittel Á, Turiák L, Wiener Z et al (2017) Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep 7:8202. https://doi.org/10.1038/s41598-017-08392-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sisirak V, Sally B, D’Agati V, Martinez-Ortiz W, Özçakar ZB, David J, Rashidfarrokhi A, Yeste A, Panea C, Chida AS et al (2016) Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166:88–101. https://doi.org/10.1016/j.cell.2016.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sedej I, Štalekar M, Tušek Žnidarič M, Goričar K, Kojc N, Kogovšek P, Dolžan V, Arnol M, Lenassi M (2022) Extracellular vesicle-bound DNA in urine is indicative of kidney allograft injury. J Extracell Vesicles 11:e12268. https://doi.org/10.1002/jev2.12268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tutanov O, Shtam T, Grigor’eva A, Tupikin A, Tsentalovich Y, Tamkovich S (2022) Blood plasma exosomes contain circulating DNA in their crown. Diagnostics. https://doi.org/10.3390/diagnostics12040854

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jeon H, Lee J, Lee S, Kang SK, Park SJ, Yoo SM, Lee MS (2019) Extracellular vesicles from KSHV-infected cells stimulate antiviral immune response through mitochondrial DNA. Front Immunol 10:876. https://doi.org/10.3389/fimmu.2019.00876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025. https://doi.org/10.1038/ni.2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953. https://doi.org/10.1038/nm.1855

    Article  CAS  PubMed  Google Scholar 

  137. Wang Z, Hill S, Luther JM, Hachey DL, Schey KL (2012) Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 12:329–338. https://doi.org/10.1002/pmic.201100477

    Article  CAS  PubMed  Google Scholar 

  138. Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF (2017) Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder cancer. Oncotarget 8:91199–91208. https://doi.org/10.18632/oncotarget.20043

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lázaro-Ibáñez E, Lässer C, Shelke GV, Crescitelli R, Jang SC, Cvjetkovic A, García-Rodríguez A, Lötvall J (2019) DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J Extracell Vesicles 8:1656993. https://doi.org/10.1080/20013078.2019.1656993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu H, Tian Y, Xue C, Niu Q, Chen C, Yan X (2022) Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. J Extracell Vesicles 11:e12206. https://doi.org/10.1002/jev2.12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Erdal E, Haider S, Rehwinkel J, Harris AL, McHugh PJ (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 31:353–369. https://doi.org/10.1101/gad.289769.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131. https://doi.org/10.3389/fgene.2013.00131

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650. https://doi.org/10.1042/bj20080413

    Article  CAS  PubMed  Google Scholar 

  144. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–470. https://doi.org/10.1038/nature23470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jonathan EC, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83. https://doi.org/10.1016/s1367-5931(99)80014-3

    Article  CAS  PubMed  Google Scholar 

  146. Kobayashi D, Oike T, Murata K, Irie D, Hirota Y, Sato H, Shibata A, Ohno T (2020) Induction of micronuclei in cervical cancer treated with radiotherapy. J Pers Med. https://doi.org/10.3390/jpm10030110

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hintzsche H, Polat B, Schewe V, Djuzenova CS, Pfreundner L, Flentje M, Stopper H (2012) Micronucleus formation kinetics in buccal mucosa cells of head and neck cancer patients undergoing radiotherapy. Toxicol Lett 212:33–37. https://doi.org/10.1016/j.toxlet.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  148. Driessens G, Harsan L, Robaye B, Waroquier D, Browaeys P, Giannakopoulos X, Velu T, Bruyns C (2003) Micronuclei to detect in vivo chemotherapy damage in a p53 mutated solid tumour. Br J Cancer 89:727–729. https://doi.org/10.1038/sj.bjc.6601163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:47–60. https://doi.org/10.1016/j.cell.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP et al (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105–109. https://doi.org/10.1038/nature15548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF et al (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143. https://doi.org/10.1083/jcb.201212110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vizioli MG, Liu T, Miller KN, Robertson NA, Gilroy K, Lagnado AB, Perez-Garcia A, Kiourtis C, Dasgupta N, Lei X et al (2020) Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev 34:428–445. https://doi.org/10.1101/gad.331272.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Glück S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L, Ablasser A (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19:1061–1070. https://doi.org/10.1038/ncb3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Borghesan M, Fafian-Labora J, Eleftheriadou O, Carpintero-Fernandez P, Paez-Ribes M, Vizcay-Barrena G, Swisa A, Kolodkin-Gal D, Ximenez-Embun P, Lowe R et al (2019) Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep 27:3956–3971.e6. https://doi.org/10.1016/j.celrep.2019.05.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abdul-Aziz AM, Sun Y, Hellmich C, Marlein CR, Mistry J, Forde E, Piddock RE, Shafat MS, Morfakis A, Mehta T et al (2019) Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood 133:446–456. https://doi.org/10.1182/blood-2018-04-845420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jeon HY, Kim JK, Ham SW, Oh SY, Kim J, Park JB, Lee JY, Kim SC, Kim H (2016) Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype. Tumour Biol 37:5857–5867. https://doi.org/10.1007/s13277-015-4439-2

    Article  CAS  PubMed  Google Scholar 

  157. Joyner DE, Bastar JD, Randall RL (2006) Doxorubicin induces cell senescence preferentially over apoptosis in the FU-SY‑1 synovial sarcoma cell line. J Orthop Res 24:1163–1169. https://doi.org/10.1002/jor.20169

    Article  CAS  PubMed  Google Scholar 

  158. Hitomi K, Okada R, Loo TM, Miyata K, Nakamura AJ, Takahashi A (2020) DNA damage regulates senescence-associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses. Int J Mol Sci. https://doi.org/10.3390/ijms21103720

    Article  PubMed  PubMed Central  Google Scholar 

  159. Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K (2011) Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging 3:782–793. https://doi.org/10.18632/aging.100363

    Article  PubMed  PubMed Central  Google Scholar 

  160. Riley JS, Quarato G, Cloix C, Lopez J, O’Prey J, Pearson M, Chapman J, Sesaki H, Carlin LM, Passos JF et al (2018) Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. https://doi.org/10.15252/embj.201899238

    Article  PubMed  PubMed Central  Google Scholar 

  161. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. https://doi.org/10.1126/science.aao6047

    Article  PubMed  Google Scholar 

  162. Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, Haller M, Riley JS, Mason SM, Athineos D et al (2015) Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell 57:860–872. https://doi.org/10.1016/j.molcel.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A, Wang K, Zhu J, Yoon HE, Wang X, Kerkhofs M et al (2019) VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366:1531–1536. https://doi.org/10.1126/science.aav4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. García N, García JJ, Correa F, Chávez E (2005) The permeability transition pore as a pathway for the release of mitochondrial DNA. Proc Natl Sci Counc Repub China B 76:2873–2880. https://doi.org/10.1016/j.lfs.2004.12.012

    Article  CAS  Google Scholar 

  165. Kam WW, Banati RB (2013) Effects of ionizing radiation on mitochondria. Free Radic Biol Med 65:607–619. https://doi.org/10.1016/j.freeradbiomed.2013.07.024

    Article  CAS  PubMed  Google Scholar 

  166. Averbeck D, Rodriguez-Lafrasse C (2021) Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. https://doi.org/10.3390/ijms222011047

    Article  PubMed  PubMed Central  Google Scholar 

  167. Pérez-Treviño P, Velásquez M, García N (2020) Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Dis 1866:165761. https://doi.org/10.1016/j.bbadis.2020.165761

    Article  CAS  PubMed  Google Scholar 

  168. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R et al (2019) Reassessment of exosome composition. Cell 177:428–445.e18. https://doi.org/10.1016/j.cell.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Castellanos-Rizaldos E, Zhang X, Tadigotla VR, Grimm DG, Karlovich C, Raez LE, Skog JK (2019) Exosome-based detection of activating and resistance EGFR mutations from plasma of non-small cell lung cancer patients. Oncotarget 10:2911–2920. https://doi.org/10.18632/oncotarget.26885

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, Tachezy M, Bockhorn M, Gebauer F, Haltom AR et al (2017) Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther 18:158–165. https://doi.org/10.1080/15384047.2017.1281499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, Stephens BM, Huang J, Semaan A, Guerrero PA et al (2019) Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology 156:108–118.e4. https://doi.org/10.1053/j.gastro.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  172. Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, Davis G, Kumar T, Katz M, Overman MJ et al (2017) High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol 28:741–747. https://doi.org/10.1093/annonc/mdx004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Elzanowska J, Semira C, Costa-Silva B (2021) DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol 15:1701–1714. https://doi.org/10.1002/1878-0261.12777

    Article  CAS  PubMed  Google Scholar 

  174. McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA (2015) Exosomes: mechanisms of uptake. J Circ Biomark 4:7. https://doi.org/10.5772/61186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zech D, Rana S, Buchler MW, Zoller M (2012) Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Commun Signal 10:37. https://doi.org/10.1186/1478-811X-10-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Horibe S, Tanahashi T, Kawauchi S, Murakami Y, Rikitake Y (2018) Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer 18:47. https://doi.org/10.1186/s12885-017-3958-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rana S, Yue S, Stadel D, Zoller M (2012) Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 44:1574–1584. https://doi.org/10.1016/j.biocel.2012.06.018

    Article  CAS  PubMed  Google Scholar 

  178. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422. https://doi.org/10.1146/annurev.cellbio.19.111301.153609

    Article  CAS  PubMed  Google Scholar 

  179. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rogasevskaia T, Coorssen JR (2006) Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J Cell Sci 119:2688–2694. https://doi.org/10.1242/jcs.03007

    Article  CAS  PubMed  Google Scholar 

  181. He J, Ren W, Wang W, Han W, Jiang L, Zhang D, Guo M (2022) Exosomal targeting and its potential clinical application. Drug Deliv and Transl Res 12:2385–2402. https://doi.org/10.1007/s13346-021-01087-1

    Article  CAS  Google Scholar 

  182. Saunderson SC, Dunn AC, Crocker PR, McLellan AD (2014) CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123:208–216. https://doi.org/10.1182/blood-2013-03-489732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A 110:17380–17385. https://doi.org/10.1073/pnas.1304266110

    Article  PubMed  PubMed Central  Google Scholar 

  184. Purushothaman A, Bandari SK, Chandrashekar DS, Jones RJ, Lee HC, Weber DM, Orlowski RZ (2017) Chondroitin sulfate proteoglycan serglycin influences protein cargo loading and functions of tumor-derived exosomes. Oncotarget 8:73723–73732. https://doi.org/10.18632/oncotarget.20564

    Article  PubMed  PubMed Central  Google Scholar 

  185. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD (2016) Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem 291:1652–1663. https://doi.org/10.1074/jbc.M115.686295

    Article  CAS  PubMed  Google Scholar 

  186. Lima LG, Ham S, Shin H, Chai EPZ, Lek ESH, Lobb RJ, Muller AF, Mathivanan S, Yeo B, Choi Y et al (2021) Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat Commun 12:3543. https://doi.org/10.1038/s41467-021-23946-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Berditchevski F, Odintsova E (1999) Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. J Cell Biol 146:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zoller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678. https://doi.org/10.1158/0008-5472.CAN-09-2470

    Article  CAS  PubMed  Google Scholar 

  189. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J of Extracellular Vesicle. https://doi.org/10.3402/jev.v3.24641

    Article  Google Scholar 

  190. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289:22258–22267. https://doi.org/10.1074/jbc.M114.588046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11:675–687. https://doi.org/10.1111/j.1600-0854.2010.01041.x

    Article  CAS  PubMed  Google Scholar 

  192. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK, Simons M (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124:447–458. https://doi.org/10.1242/jcs.074088

    Article  CAS  PubMed  Google Scholar 

  193. Taylor MJ, Perrais D, Merrifield CJ (2011) A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 9:e1000604. https://doi.org/10.1371/journal.pbio.1000604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Giangreco G, Malabarba MG, Sigismund S (2021) Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biol Cell 113:165–182. https://doi.org/10.1111/boc.202000129

    Article  CAS  PubMed  Google Scholar 

  195. Kovtun O, Dickson VK, Kelly BT, Owen DJ, Briggs JAG (2020) Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Sci Adv 6:eaba8381. https://doi.org/10.1126/sciadv.aba8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kirchhausen T (2000) Clathrin. Annu Rev Biochem 69:699–727. https://doi.org/10.1146/annurev.biochem.69.1.699

    Article  CAS  PubMed  Google Scholar 

  197. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533. https://doi.org/10.1038/nrm3151

    Article  CAS  PubMed  Google Scholar 

  198. Cronqvist T, Erlandsson L, Tannetta D, Hansson SR (2020) Placental syncytiotrophoblast extracellular vesicles enter primary endothelial cells through clathrin-mediated endocytosis. Placenta 100:133–141. https://doi.org/10.1016/j.placenta.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  199. Cheung KL, Jarrett R, Subramaniam S, Salimi M, Gutowska-Owsiak D, Chen YL, Hardman C, Xue L, Cerundolo V, Ogg G (2016) Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med 213:2399–2412. https://doi.org/10.1084/jem.20160258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Popena I, Abols A, Saulite L, Pleiko K, Zandberga E, Jekabsons K, Endzelins E, Llorente A, Line A, Riekstina U (2018) Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Commun Signal 16:17. https://doi.org/10.1186/s12964-018-0229-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ginini L, Billan S, Fridman E, Gil Z (2022) Insight into extracellular vesicle-cell communication: from cell recognition to intracellular fate. Cells. https://doi.org/10.3390/cells11091375

    Article  PubMed  PubMed Central  Google Scholar 

  202. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J (2011) Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One 6:e24234. https://doi.org/10.1371/journal.pone.0024234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, Morgelin M, Belting M (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin‑1. J Biol Chem 288:17713–17724. https://doi.org/10.1074/jbc.M112.445403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Khan I, Steeg PS (2021) Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 124:66–75. https://doi.org/10.1038/s41416-020-01179-8

    Article  CAS  PubMed  Google Scholar 

  205. Furmanik M, Chatrou M, van Gorp R, Akbulut A, Willems B, Schmidt H, van Eys G, Bochaton-Piallat ML, Proudfoot D, Biessen E et al (2020) Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circ Res 127:911–927. https://doi.org/10.1161/CIRCRESAHA.119.316159

    Article  CAS  PubMed  Google Scholar 

  206. Ahram M, Sameni M, Qiu RG, Linebaugh B, Kirn D, Sloane BF (2000) Rac1-induced endocytosis is associated with intracellular proteolysis during migration through a three-dimensional matrix. Exp Cell Res 260:292–303. https://doi.org/10.1006/excr.2000.5031

    Article  CAS  PubMed  Google Scholar 

  207. Kerr MC, Teasdale RD (2009) Defining macropinocytosis. Traffic 10:364–371. https://doi.org/10.1111/j.1600-0854.2009.00878.x

    Article  CAS  PubMed  Google Scholar 

  208. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P (2017) Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 266:100–108. https://doi.org/10.1016/j.jconrel.2017.09.019

    Article  CAS  PubMed  Google Scholar 

  209. Wang Z, Zhu H, Shi H, Zhao H, Gao R, Weng X, Liu R, Li X, Zou Y, Hu K et al (2019) Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway. Cell Death Dis 10:422. https://doi.org/10.1038/s41419-019-1667-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T (2015) Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 5:10300. https://doi.org/10.1038/srep10300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li YX, Pang HB (2021) Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. J Control Release 329:1222–1230. https://doi.org/10.1016/j.jconrel.2020.10.049

    Article  CAS  PubMed  Google Scholar 

  212. Desrochers LM, Bordeleau F, Reinhart-King CA, Cerione RA, Antonyak MA (2016) Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 7:11958. https://doi.org/10.1038/ncomms11958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Mathieu M, Martin-Jaular L, Lavieu G, Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17. https://doi.org/10.1038/s41556-018-0250-9

    Article  CAS  PubMed  Google Scholar 

  214. Hazawa M, Tomiyama K, Saotome-Nakamura A, Obara C, Yasuda T, Gotoh T, Tanaka I, Yakumaru H, Ishihara H, Tajima K (2014) Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. Biochem Biophys Res Commun 446:1165–1171. https://doi.org/10.1016/j.bbrc.2014.03.067

    Article  CAS  PubMed  Google Scholar 

  215. Mrowczynski OD, Madhankumar AB, Sundstrom JM, Zhao Y, Kawasawa YI, Slagle-Webb B, Mau C, Payne RA, Rizk EB, Zacharia BE et al (2018) Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 9:36083–36101. https://doi.org/10.18632/oncotarget.26300

    Article  PubMed  PubMed Central  Google Scholar 

  216. Tu C, Du Z, Zhang H, Feng Y, Qi Y, Zheng Y, Liu J, Wang J (2021) Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells. Theranostics 11:2364–2380. https://doi.org/10.7150/thno.47996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tsai WC, Hsu CC, Pang JH, Lin MS, Chen YH, Liang FC (2012) Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression. PLoS One 7:e38235. https://doi.org/10.1371/journal.pone.0038235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Qian J, Yang J, Dragovic AF, Abu-Isa E, Lawrence TS, Zhang M (2005) Ionizing radiation-induced adenovirus infection is mediated by dynamin 2. Cancer Res 65:5493–5497. https://doi.org/10.1158/0008-5472.CAN-04-4526

    Article  CAS  PubMed  Google Scholar 

  219. Tortolici F, Vumbaca S, Incocciati B, Dayal R, Aquilano K, Giovanetti A, Rufini S (2021) Ionizing radiation-induced extracellular vesicle release promotes AKT-associated survival response in SH-SY5Y neuroblastoma cells. Cells. https://doi.org/10.3390/cells10010107

    Article  PubMed  PubMed Central  Google Scholar 

  220. Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24:26–34. https://doi.org/10.1016/j.tcb.2013.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhang Y, Yu S, Zhuang L, Zheng Z, Chao T, Fu Q (2012) Caveolin‑1 is involved in radiation-induced ERBB2 nuclear transport in breast cancer cells. J Huazhong Univ Sci Technol Med Sci 32:888–892. https://doi.org/10.1007/s11596-012-1053-z

    Article  CAS  Google Scholar 

  222. Zhu H, Yue J, Pan Z, Wu H, Cheng Y, Lu H, Ren X, Yao M, Shen Z, Yang JM (2010) Involvement of caveolin‑1 in repair of DNA damage through both homologous recombination and non-homologous end joining. PLoS One 5:e12055. https://doi.org/10.1371/journal.pone.0012055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Cordes N, Frick S, Brunner TB, Pilarsky C, Grutzmann R, Sipos B, Kloppel G, McKenna WG, Bernhard EJ (2007) Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin‑1. Oncogene 26:6851–6862. https://doi.org/10.1038/sj.onc.1210498

    Article  CAS  PubMed  Google Scholar 

  224. Qian M, Wang S, Guo X, Wang J, Zhang Z, Qiu W, Gao X, Chen Z, Xu J, Zhao R et al (2020) Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-kappaB pathways. Oncogene 39:428–442. https://doi.org/10.1038/s41388-019-0996-y

    Article  CAS  PubMed  Google Scholar 

  225. Baselet B, Azimzadeh O, Erbeldinger N, Bakshi MV, Dettmering T, Janssen A, Ktitareva S, Lowe DJ, Michaux A, Quintens R et al (2017) Differential impact of single-dose Fe Ion and X‑ray irradiation on endothelial cell transcriptomic and proteomic responses. Front Pharmacol 8:570. https://doi.org/10.3389/fphar.2017.00570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nakaoka A, Nakahana M, Inubushi S, Akasaka H, Salah M, Fujita Y, Kubota H, Hassan M, Nishikawa R, Mukumoto N et al (2021) Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species. Oncol Rep. https://doi.org/10.3892/or.2021.7964

    Article  PubMed  PubMed Central  Google Scholar 

  227. Wang WL, Huang WC (2016) Rac1 is a potential target to circumvent radioresistance. J Thorac Dis 8:E1475–E1477. https://doi.org/10.21037/jtd.2016.11.79

    Article  PubMed  PubMed Central  Google Scholar 

  228. Rathinam R, Berrier A, Alahari SK (2011) Role of Rho GTPases and their regulators in cancer progression. Front Biosci 16:2561–2571. https://doi.org/10.2741/3872

    Article  CAS  Google Scholar 

  229. Hein AL, Post CM, Sheinin YM, Lakshmanan I, Natarajan A, Enke CA, Batra SK, Ouellette MM, Yan Y (2016) RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene 35:6319–6329. https://doi.org/10.1038/onc.2016.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yan Y, Hein AL, Etekpo A, Burchett KM, Lin C, Enke CA, Batra SK, Cowan KH, Ouellette MM (2014) Inhibition of RAC1 GTPase sensitizes pancreatic cancer cells to gamma-irradiation. Oncotarget 5:10251–10270. https://doi.org/10.18632/oncotarget.2500

    Article  PubMed  PubMed Central  Google Scholar 

  231. Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH (2012) RAC1 GTPase plays an important role in gamma-irradiation induced G2/M checkpoint activation. Breast Cancer Res 14:R60. https://doi.org/10.1186/bcr3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hamalukic M, Huelsenbeck J, Schad A, Wirtz S, Kaina B, Fritz G (2011) Rac1-regulated endothelial radiation response stimulates extravasation and metastasis that can be blocked by HMG-CoA reductase inhibitors. PLoS One 6:e26413. https://doi.org/10.1371/journal.pone.0026413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Faissal Ouenzar MJH, Weinfeld M (2016) Shuttling towards a predictive assay for radiotherapy. Transl Cancer Res. https://doi.org/10.21037/tcr.2016.10.61

    Article  Google Scholar 

  234. Lim DS, Kirsch DG, Canman CE, Ahn JH, Ziv Y, Newman LS, Darnell RB, Shiloh Y, Kastan MB (1998) ATM binds to beta-adaptin in cytoplasmic vesicles. Proc Natl Acad Sci U S A 95:10146–10151. https://doi.org/10.1073/pnas.95.17.10146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sundqvist T, Liu SM (1993) Hydrogen peroxide stimulates endocytosis in cultured bovine aortic endothelial cells. Acta Physiol Scand 149:127–131. https://doi.org/10.1111/j.1748-1716.1993.tb09604.x

    Article  CAS  PubMed  Google Scholar 

  236. Liu SM, Sundqvist T (1995) Effects of hydrogen peroxide and phorbol myristate acetate on endothelial transport and F‑actin distribution. Exp Cell Res 217:1–7. https://doi.org/10.1006/excr.1995.1056

    Article  CAS  PubMed  Google Scholar 

  237. Khan EM, Heidinger JM, Levy M, Lisanti MP, Ravid T, Goldkorn T (2006) Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 281:14486–14493. https://doi.org/10.1074/jbc.M509332200

    Article  CAS  PubMed  Google Scholar 

  238. Lerner N, Chen I, Schreiber-Avissar S, Beit-Yannai E (2020) Extracellular vesicles mediate anti-oxidative response-in vitro study in the ocular drainage system. Int J Mol Sci. https://doi.org/10.3390/ijms21176105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Euratom Research and Training Programme 2021–2025, grant agreement number 101061037.

Author information

Authors and Affiliations

Authors

Contributions

LK and TSz had the idea for the article; TSz, KB, and IBCs performed the literature search of different parts of the manuscript and drafted the work; GS and KL revised the manuscript critically. All authors approved the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Tünde Szatmári.

Ethics declarations

Conflict of interest

T. Szatmári, K. Balázs, I.B. Csordás, G. Sáfrány, and K. Lumniczky declare that they have no competing interests.

Additional information

The authors Katalin Balázs and Ilona Barbara Csordás contributed equally to the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szatmári, T., Balázs, K., Csordás, I.B. et al. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 199, 1191–1213 (2023). https://doi.org/10.1007/s00066-023-02098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02098-2

Keywords

Navigation