Skip to main content

Advertisement

Log in

Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype

  • Original Article
  • Published:
Tumor Biology

Abstract

Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17–20 % of GBM cells dead, but resulted in 60–80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21CIP1-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res. 2010;16:2443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang BC, Thornton Jr AF, Sandler HM, Greenberg HS. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg. 1991;75:559–63.

    Article  CAS  PubMed  Google Scholar 

  5. Sneed PK, Gutin PH, Larson DA, Malec MK, Phillips TL, Prados MD, et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys. 1994;29:719–27.

    Article  CAS  PubMed  Google Scholar 

  6. Chang JE, Khuntia D, Robins HI, Mehta MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol. 2007;894–902:7–15.

    Google Scholar 

  7. Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat Rev Clin Oncol. 2013;10:14–26.

    Article  CAS  PubMed  Google Scholar 

  8. Persano L, Rampazzo E, Basso G, Viola G. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 2013;85:612–22.

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell JB, Choudhuri R, Fabre K, Sowers AL, Citrin D, Zabludoff SD, et al. In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res. 2010;16:2076–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernhard EJ, Maity A, Muschel RJ, McKenna WG. Effects of ionizing radiation on cell cycle progression. Radiat Environ Biophys. 1995;34:79–83.

    Article  CAS  PubMed  Google Scholar 

  11. Maity A, McKenna WG, Muschel RJ. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 1994;31:1–13.

    Article  CAS  PubMed  Google Scholar 

  12. Campisi J, di Fagagna FA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.

    Article  CAS  PubMed  Google Scholar 

  13. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res. 2003;63:2705–15.

    CAS  PubMed  Google Scholar 

  14. Bravata V, Minafra L, Russo G, Forte GI, Cammarata FP, Ripamonti M, et al. High-dose ionizing radiation regulates gene expression changes in the MCF7 breast cancer cell line. Anticancer Res. 2015;35:2577–91.

    CAS  PubMed  Google Scholar 

  15. Ye C, Zhang X, Wan J, Chang L, Hu W, Bing Z, et al. Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase. Cell Cycle. 2013;12:1424–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hornsby PJ. Senescence as an anticancer mechanism. J Clin Oncol. 2007;25:1852–7.

    Article  CAS  PubMed  Google Scholar 

  17. Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci U S A. 2007;104:13028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cerella C, Grandjenette C, Dicato M, Diederich M. Roles of apoptosis and cellular senescence in cancer and aging. Curr Drug Targets. 2015.

  19. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han NK, Kim BC, Lee HC, Lee YJ, Park MJ, Chi SG, et al. Secretome analysis of ionizing radiation‐induced senescent cancer cells reveals that secreted rkip plays a critical role in neighboring cell migration. Proteomics. 2012;12:2822–32.

    Article  CAS  PubMed  Google Scholar 

  22. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.

    Article  CAS  PubMed  Google Scholar 

  23. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article  CAS  PubMed  Google Scholar 

  24. Liao EC, Hsu YT, Chuah QY, Lee YJ, Hu JY, Huang TC, et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 2014;5, e1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mosieniak G, Strzeszewska A. The role of cellular senescence in carcinogenesis and antitumor therapy. Postepy Biochem. 2014;60:194–206.

    PubMed  Google Scholar 

  26. Petit V, Massonnet G, Maciorowski Z, Touhami J, Thuleau A, Nemati F, et al. Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Investig. 2013;93:611–21.

    Article  CAS  PubMed  Google Scholar 

  27. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  PubMed  Google Scholar 

  28. Pyrko P, Soriano N, Kardosh A, Liu Y-T, Uddin J, Petasis NA, et al. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer. 2006;5:19.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25:2125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bartkova J, Hořejší Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.

    Article  CAS  PubMed  Google Scholar 

  31. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.

    Article  CAS  PubMed  Google Scholar 

  32. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98:12072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  34. Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6:648–57.

    Article  PubMed  Google Scholar 

  35. Liu SC, Alomran R, Chernikova SB, Lartey F, Stafford J, Jang T, et al. Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro Oncol. 2014;16:21–8.

    Article  CAS  PubMed  Google Scholar 

  36. Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284:29087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuo PL, Shen KH, Hung SH, Hsu YL. CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis. 2012;33:2477–87.

    Article  CAS  PubMed  Google Scholar 

  39. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    Article  CAS  PubMed  Google Scholar 

  40. Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ. 2006;13:738–47.

    Article  CAS  PubMed  Google Scholar 

  41. Atkinson GP, Nozell SE, Benveniste ET. NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother. 2010;10:575–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of the Cell Growth Regulation Laboratory for their helpful discussion and technical assistance. This work was supported by the National Nuclear Technology Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, and Future Planning (No. 2013M2A2A7042530 to H. Kim), and a research grant (to S.Y. Oh) funded by the Institute of Life Science and Natural Resources at Korea University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Chan Kim or Hyunggee Kim.

Ethics declarations

The study experiments were approved by the Animal Care Committee of the College of Life Sciences and Biotechnology, Korea University, according to government and institutional guidelines and regulations of Korea.

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

sFig. 1

Irradiation-induced GBM cell death was decreased by inhibition of NFκB signaling. FACS analysis revealed that early apoptotic cell populations (Annexin V-positive/PI-negative) of IκBα mutant-expressing GBM cells (U87MG and LN229) decreased compared to control counterpart GBM cells on Day 3 after irradiation with 20 Gy. There was no obvious difference on necrotic cell population (Annexin V-negative/PI-positive) in these cells. (GIF 105 kb)

High Resolution Image (TIF 14313 kb)

sFig. 2

Irradiated GBM cells are not present in the tumor xenograft. a. FACS analysis showed cell populations expressing DsRed fluorescence in the mix of non-irradiated LN229 (1 × 10 ) and irradiated DsRed-expressing LN229 cells (2 × 10 ) before in vivo mouse co-injection. This experiment was set for a positive control. b. FACS analysis revealed that DsRed-positive cell populations were not present in tumors derived from the mix of non-irradiated LN229 and irradiated DsRed-expressing LN229 cells. Single cells dissociated from tumors derived from non-irradiated LN229 cells alone were used as a negative control. (GIF 133 kb)

High Resolution Image (TIF 17639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, HY., Kim, JK., Ham, S.W. et al. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype. Tumor Biol. 37, 5857–5867 (2016). https://doi.org/10.1007/s13277-015-4439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4439-2

Keywords

Navigation