Skip to main content
Log in

Using weapons instead of perfume: chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae)

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

A vast diversity of parasites associates with ants. Living in and around ant nests of these organisms must overcome ant colony defenses. As ant defensive behavior is mainly mediated by species-specific cuticular hydrocarbons (CHCs) or alarm pheromones, and ant-associated parasites can either crack their hosts’ chemical communication code by modifying their own CHC profiles or use pro-active strategies like chemical weaponry for distraction and repellency. While the chemical nature of ant–parasite interactions has been intensively studied for highly host-specific parasites, the chemical-deceptive strategies of the rather rare ant-resembling heteropterans are unknown. To gain insight into this system, I studied the bug Scolopostethus pacificus (Barber 1918) which can be found near the nests of the ecologically dominant and aggressive velvety tree ant (Liometopum occidentale, Emery 1895). Using behavioral, chemical, and molecular approaches, I disentangled the relationship of S. pacificus and its host ant. Chemical profiling of the bug and the ant revealed that the bug does not make use of CHC insignificance or mimicry, but instead uses a cocktail of volatile compounds released from its metathoracic glands that likely moderates encounters with its aggressive host. Feeding trials with armed and artificially disarmed bugs revealed a defensive function of the gland exudates. Targeted molecular gut barcoding showed that S. pacificus does not feed on L. occidentale. These results suggest that chemical weaponry, rather than a chemical code-cracking CHC matching or chemical insignificance, enables S. pacificus to get along with and live in close proximity to its host ant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akino T (2008) Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News 11:173–181

    Google Scholar 

  • Aldrich J (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33:211–238

    Article  Google Scholar 

  • Bagnères A-G, Lorenzi MC (2010) Chemical deception/mimicry using cuticular hydrocarbons Insect hydrocarbons. Biol Biochem Chem Ecol. https://doi.org/10.1017/CBO9780511711909.015

    Article  Google Scholar 

  • Barber H (1918) Concerning Lygaeidae. No. 2. J NY Entomol Soc 26:49–66

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B 57:289–300

    Google Scholar 

  • Blomquist GJ, Bagnères A-G (2010) Insect hydrocarbons. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46

    Article  CAS  Google Scholar 

  • Brückner A, Hoenle PO, von Beeren C (2018) Comparative chemical analysis of army ant mandibular gland volatiles (Formicidae: Dorylinae). PeerJ 6:e5319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson DA, Roan CS, Yost RA, Hector J (1989) Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal Chem 61:1564–1571

    Article  CAS  Google Scholar 

  • Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865

    Article  CAS  Google Scholar 

  • Cushing PE (1997) Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist 80(2):165–193

    Article  Google Scholar 

  • Cushing PE (2012) Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche. https://doi.org/10.1155/2012/151989

    Article  Google Scholar 

  • Dani FR, Jones GR, Destri S, Spencer SH, Turillazzi S (2001) Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 62:165–171

    Article  Google Scholar 

  • Danoff-Burg JA (1994) Evolving under myrmecophily: a cladistic revision of the symphilic beetle tribe Sceptobiini (Coleoptera: Staphylinidae: Aleocharinae). System Entomol 19:25–45

    Article  Google Scholar 

  • Danoff-Burg JA (2002) Evolutionary lability and phylogenetic utility of behavior in a group of ant-guest Staphylinidae beetles. Ann Entomol Soc Am 95:143–155

    Article  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Ann Rev Entomol 39:129–154

    Article  CAS  Google Scholar 

  • D’Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142

    Article  CAS  Google Scholar 

  • Duffey S, Scudder G (1974) Cardiac glycosides in Oncopeltus fasciatus (Dallas)(Hemiptera: Lygaeidae). I. The Uptake and Distribution of Natural Cardenolides in the Body Canadian. J Zool 52:283–290

    Google Scholar 

  • Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press

    Google Scholar 

  • Greene MJ, Gordon DM (2007) Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J Exp Biol 210:897–905

    Article  CAS  PubMed  Google Scholar 

  • Guillem RM, Drijfhout F, Martin SJ (2014) Chemical deception among ant social parasites Current. Zoology 60:62–75

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hoey-Chamberlain R, Rust MK, Klotz JH (2013) A review of the biology, ecology and behavior of velvety tree ants of North America. Sociobiology 60:1–10

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press

    Book  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Jeral JM, Breed MD, Hibbard BE (1997) Thief ants have reduced quantities of cuticular compounds in a ponerine ant, Ectatomma Ruidum. Physiol Entomol 22:207–211

    Article  CAS  Google Scholar 

  • Ji YJ, Zhang DX, He LJ (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3:581–585

    Article  CAS  Google Scholar 

  • Johnson CA, Vander Meer RK, Lavine B (2001) Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps Emery, after killing a Formica host queen (Hymenoptera: Formicidae). J Chem Ecol 27:1787–1804

    Article  CAS  PubMed  Google Scholar 

  • Kather R, Martin SJ (2015) Evolution of cuticular Hydrocarbons in the Hymenoptera: a meta-analysis. J Chem Ecol 41:871–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistner DH (1981) Social and evolutionary significance of social insect symbionts. Soc Insects 1:339–413

    Google Scholar 

  • Kistner DH (1982) The social insects’ bestiary. Soc Insects 3:1–244

    Google Scholar 

  • Kleineidam CJ, Heeb EL, Neupert S (2017) Social interactions promote adaptive resource defense in ants. PLoS ONE 12:e0183872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krajicek J et al (2016) Comparative analysis of volatile defensive secretions of three species of Pyrrhocoridae (Insecta: Heteroptera) by gas chromatography-mass spectrometric method. PLoS ONE 11:e0168827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krall BS, Bartelt RJ, Lewis CJ, Whitman DW (1999) Chemical defense in the stink bug Cosmopepla bimaculata. J Chem Ecol 25:2477–2494

    Article  CAS  Google Scholar 

  • Kronauer DJ, Pierce NE (2011) Myrmecophiles Current Biology 21:R208–R209

    Article  CAS  PubMed  Google Scholar 

  • Larson DJ, Scudder G (2018) Seed Bugs and their allies (Hemiptera: Heteroptera: Lygaeoidea) of the Canadian Prairie Provinces Canadian Journal of Arthropod Identification

  • Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Ann Rev Entomol 46:573–599

    Article  CAS  Google Scholar 

  • Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Takahashi J-i, Ono M, Drijfhout FP (2008) Is the social parasite Vespa dybowskii using chemical transparency to get her eggs accepted? J Insect Physiol 54:700–707

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Helanterä H, Drijfhout FP (2011) Is parasite pressure a driver of chemical cue diversity in ants? Proc R Soc B 278:496–503

    Article  PubMed  Google Scholar 

  • Maruyama M, Parker J (2017) Deep-time convergence in rove beetle symbionts of army ants. Curr Biol 27:920–926

    Article  CAS  PubMed  Google Scholar 

  • Menzel F, Blaimer BB, Schmitt T (2017) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc R Soc B 284:20161727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira JA, Millar JG (2005) Short and simple syntheses of 4-oxo-(E)-2-hexenal and homologs: pheromone components and defensive compounds of Hemiptera. J Chem Ecol 31:965–968

    Article  CAS  PubMed  Google Scholar 

  • Naragon TH, Wagner JM, Parker J (2022) Parallel evolutionary paths of rove beetle myrmecophiles: replaying a deep-time tape of life. Curr Opin Insect Sci 51:100903

    Article  PubMed  Google Scholar 

  • Neupert S, DeMilto A, Drijfhout F, Speller S, Adams RM (2018) Host colony integration: Megalomyrmex guest ant parasites maintain peace with their host using weaponry. Anim Behav 139:71–79

    Article  Google Scholar 

  • Parker J (2016) Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol News 22:65–108

    Google Scholar 

  • Parker J, Grimaldi DA (2014) Specialized myrmecophily at the ecological dawn of modern ants. Curr Biol 24:2428–2434

    Article  CAS  PubMed  Google Scholar 

  • Parmentier T (2020) Guests of social insects. In: Encyclopedia of Social Insects. Springer

    Book  Google Scholar 

  • Parmentier T, Dekoninck W, Wenseleers T (2014) A highly diverse microcosm in a hostile world: a review on the associates of red wood ants (Formica rufa group). Insectes Soc 61:229–237

    Article  Google Scholar 

  • Parmentier T, Dekoninck W, Wenseleers T (2017) Arthropods associate with their red wood ant host without matching nestmate recognition cues. J Chem Ecol 43:644–661

    Article  CAS  PubMed  Google Scholar 

  • Pekár S, Jiroš P (2011) Do ant mimics imitate cuticular hydrocarbons of their models? Anim Behav 82:1193–1199

    Article  Google Scholar 

  • Polidori C, Geyer M, Schmitt T (2020) Do Sphecodes cuckoo bees use chemical insignificance to invade the nests of their social Lasioglossum bee hosts? Apidologie 51:147–162

    Article  Google Scholar 

  • Post DC, Jeanne RL (1981) Colony defense against ants by Polistes fuscatus (Hymenoptera: Vespidae) in Wisconsin. J Kansas Entomol Soc 54(3):599–615

    Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schuh RT, Slater JA (1995) True bugs of the world (Hemiptera: Heteroptera): classification and natural history. Cornell University Press

    Google Scholar 

  • Slater JA, Carayon J (1963) Ethiopian Lygaeidae IV: a new predatory Lygaeid from Africa with a discussion of its biology and morphology (Hemiptera: Heteroptera). In: Proceedings of the Royal Entomological Society of London. Series A, General Entomology, vol 1–3. Wiley Online Library, pp 1–11

  • Thiel T, Brechtel A, Brückner A, Heethoff M, Drossel B (2018) The effect of reservoir-based chemical defense on predator-prey dynamics. Theor Ecol. Theor Ecol 12(3):365–378

    Article  Google Scholar 

  • Uboni A, Bagnères A-G, Christidès J-P, Lorenzi MC (2012) Cleptoparasites, social parasites and a common host: chemical insignificance for visiting host nests, chemical mimicry for living in. J Insect Physiol 58:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • von Beeren C, Schulz S, Hashim R, Witte V (2011) Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol 11:30

    Article  PubMed  Google Scholar 

  • von Beeren C, Pohl S, Witte V (2012) On the use of adaptive resemblance terms in chemical ecology. Psyche. https://doi.org/10.1155/2012/635761

    Article  Google Scholar 

  • von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJ (2018) Chemical and behavioral integration of army ant-associated rove beetles–a comparison between specialists and generalists. Front Zool 15:8

    Article  CAS  Google Scholar 

  • Wasmann E (1894) Kritisches Verzeichniss der myrmekophilen und termitophilen Arthropoden: Mit Angabe der Lebensweise und mit Beschreibung neuer Arten. FL Dames,

  • Yasuda T, Shigehisa S, Yuasa K, Okutani-Akamatsu Y, Teramoto N, Watanabe T, Mochizuki F (2008) Sex attractant pheromone of the sorghum plant bug Stenotus rubrovittatus (Matsumura)(Heteroptera: Miridae). Appl Entomol Zool 43:219–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Joe Parker and Mina Yousefelahiyeh for discussion and technical assistance, respectively. Steven Wilbert contributed pictures, Tom Naragon kindly provided Platyusa sonomae from his lab cultures, and Betty Hong supplied analytical standards. Christiane Weirauch (UC Riverside) identified the bug species. Christoph von Beeren and Tom Naragon critically reviewed and commented on an earlier version of the manuscript. I was a Simons Fellow of the Life Sciences Research Foundation (LSRF) when I performed the research presented in this study.

Funding

This research was supported by Simons Foundation (Grant LSRF-AB-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Brückner.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethics statement

There are no legal restrictions on working with the herein mentioned species. Field collection permissions were issues by California Department of Fish and Wildlife and the Angeles National Forest (US Forest Service; USDA).

Additional information

Communicated by Günther Raspotnig.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brückner, A. Using weapons instead of perfume: chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae). Chemoecology 32, 147–157 (2022). https://doi.org/10.1007/s00049-022-00374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-022-00374-8

Keywords

Navigation