Skip to main content
Log in

Chemical Deception and Structural Adaptation in Microdon (Diptera, Syrphidae, Microdontinae), a Genus of Hoverflies Parasitic on Social Insects

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Various organisms, especially arthropods, are able to live as parasites in ant nests and to prey upon ant broods without eliciting any aggressive behaviour in the hosts. Understanding how these intruders are able to break the ants’ communication codes in their favour represents a challenging and intriguing evolutionary question. We studied the chemical strategies of three European hoverfly species, Microdon mutabilis (parasitic on Formica cunicularia), M. analis (parasitic on Lasius emarginatus) and M. devius (parasitic on L. distinguendus). The peculiar slug-like larvae of these three species live inside ant nests feeding upon their broods. Gas chromatography-mass spectrometry analyses show that: 1) these parasites mimic the host brood rather than the ant workers, although each differs distinctly in the extent of chemical mimicry; 2) isolation experiments indicate that after 14 days the responsible cuticular hydrocarbons (CHCs) are not passively acquired but synthesized by the fly larvae. Additionally, Microdon larvae show an array of protective structural features, such as a thick and multi-layered cuticle, retractable head, dome-shaped tergum and a flat and strongly adhesive “foot” (sternum). This combination of protective chemical and structural features represents a successful key innovation by Microdon species, and one that may facilitate host switching. The results of a preliminary adoption analysis confirm that Microdon larvae of at least some species can readily be accepted by different species of ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akino T (2006) Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): description of new very long chained hydrocarbon components. Appl Entomol Zool 41:667–677

    CAS  Google Scholar 

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B Biol Sci 266:1419–1426

    CAS  Google Scholar 

  • Akre RD, Alpert G, Alpert T (1973) Life cycle and behavior of Microdon cothurnatus in Washington (Diptera: Syrphidae). J Kansas Entomol Soc 46:327–338

    Google Scholar 

  • Akre RD, Garnett WB, Richard SZ (1988) Biology and behavior of Microdon piperi in the Pacific northwest (Diptera: Syrphidae). J Kansas Entomol Soc 61:441–452

    Google Scholar 

  • Akre RD, Garnett WB, Richard SZ (1990) Ant hosts of Microdon (Diptera: Syrphidae) in the Pacific northwest. J Kansas Entomol Soc 63:175–117

    Google Scholar 

  • Andries M (1912) Zur Systematik, Biologie und Entwicklung von Microdon Meigen. Z Wiss Zool 103:300–361

  • Bagnères AG, Lorenzi C (2010) Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Hydrocarbons: biology. Cambridge University Press, Biochemistry and Chemical Ecology Insect, pp 282–324

    Google Scholar 

  • Barbero F, Bonelli S, Thomas JA, Balletto E, Schönrogge K (2009) Acoustical mimicry in a predatory social parasite of ants. J Exp Biol 212:4084–4090

    CAS  PubMed  Google Scholar 

  • Barr B (1995) Feeding behaviour and mouthpart structure of larvae of Microdon eggeri and Microdon mutabilis (Diptera, Syrphidae). Dipterists Digest 2:31–36

    Google Scholar 

  • Bonelli S, Witek M, Canterino S, Sielezniew M, Stankiewicz-Fiedurek A, Tartally A, Balletto E, Schönrogge K (2011) Distribution, host specificity, and the potential for cryptic speciation in hoverfly Microdon myrmicae (Diptera: Syrphidae), a social parasite of Myrmica ants. Ecol Entomol 36:135–143. https://doi.org/10.1111/j.1365-2311.2010.01253.x

    Article  Google Scholar 

  • Boulay R, Hefetz A, Soroker V, Lenoir A (2000) Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbons exchanges. Anim Behav 59:1127–1133

    CAS  PubMed  Google Scholar 

  • Cammaerts R (1995) Regurgitation behaviour of the Lasius flavus worker (Formicidae) towards the myrmecophilous beetle Claviger testaceus (Pselaphidae) and other recipients. Behav Process 34:241–264

    CAS  Google Scholar 

  • Cushing PE (2012) Spider-ant associations: an updated review of Myrmecomorphy, Myrmecophily, and Myrmecophagy in spiders. Psyche. https://doi.org/10.1155/2012/151989

    Google Scholar 

  • d'Ettorre P, Mondy N, Lenoir A, Errard C (2002) Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature. Proc R Soc Lond [Biol] https://doi.org/10.1098/rspb.2002.2110

    CAS  PubMed  Google Scholar 

  • Di Giulio A, Maurizi E, Barbero F, Sala M, Fattorini S, Balletto E, Bonelli S (2015) The pied Piper: a parasitic Beetle’s melodies modulate ant Behaviours. PLoS One 10:e0130541. https://doi.org/10.1371/journal.pone.0130541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doczkal D, Schmid U (1999) Revision of the central European species of the genus Microdon Meigen (Diptera, Syrphidae). Volucella 4:45–68

    Google Scholar 

  • Donisthorpe HJK (1927) The guests of british ants - their habits and life-histories. George Routledge and Sons Ltd, London

    Google Scholar 

  • Duffield RM (1981) Biology of Microdon fuscipennis (Diptera : Syrphidae) with interprétations of the reproductive strategies of Microdon specied found north of Mexico. Proc Entomol Soc Wash 83:716–724

    Google Scholar 

  • Elmes GW, Barr B, Thomas JA, Clarke RT (1999) Extreme host specificity by Microdon mutabilis (Diptera: Syrphidae), a social parasite of ants. Proc R Soc Lond B 266:447–453

    Google Scholar 

  • Errard C, Le Guisquet AM, Christidès JP, Mercier JL, Lenoir A, Hefetz A (2008) Early learning of volatile chemical cues leads to interspecific recognition between two ant species. Insect Soc 55:115–122

    Google Scholar 

  • Garnett WB, Akre RD, Sehlke G (1985) Cocoon mimicry and predation of myrmecophilous Diptera (Diptera:Syrphidae). Fla Entomol 68:615–621

    Google Scholar 

  • Garnett WB, Akre RD, Zack RS (1990) External morphology of four species of Microdon Immatures (Diptera: Syrphidae) from the Pacific northwest. Ann Entomol Soc Am 83:68–80

    Google Scholar 

  • Gibbs A (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400

    CAS  PubMed  Google Scholar 

  • Ginzel MD, Blomquist GJ (2016) Insect hydrocarbons: biochemistry and chemical ecology. In: Cohen E, Moussian B (eds) Extracellular composite matrices in arthropods. Springer, Cham, pp 221–252

    Google Scholar 

  • Greene MJ, Gordon DM (2007) Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J Exp Biol 210:897–905. https://doi.org/10.1242/jeb.02706

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JV, Goitia W, Osio A, Cabrera A, Lopez H, Sainz C, Jaffe K (2006) Leaf-cutter ant species (Hymenoptera: Atta) differ in the type of cues used to differentiate between self and others. Anim Behav 71:945–952

    Google Scholar 

  • Holldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Google Scholar 

  • Howard RW, Akre RD, Garnett WB (1990a) Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 83:607–616

    CAS  Google Scholar 

  • Howard RW, Stanley-Samuelson DW, Akre RD (1990b) Biosynthesis and chemical mimicry of Cuticular hydrocarbons from the obligate predator, Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey, Myrmica incompleta Provancher (Hymenoptera: Formicidae). J Kansas Entomol Soc 63:437–443

    Google Scholar 

  • Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Herman H (ed) Social insects, vol 1. Academic, New York, pp 339–413

    Google Scholar 

  • Lachaud J-P, Lenoir A, Hughes DP (2013) Ants and their parasites. Psyche. https://doi.org/10.1155/2013/264279

    Google Scholar 

  • Lenoir A, d'Ettorre P, Errard C, Hefetz A (2001a) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    CAS  PubMed  Google Scholar 

  • Lenoir A, Cuisset D, Hefetz A (2001b) Effects of social isolation on hydrocarbon pattern and nestmate recognition in the ant Aphaenogaster senilis (Hymenoptera, Formicidae). Insect Soc 48:101–109

    Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle: origin, composition, and function. Comp Biochem Physiol B 89:595–645

    Google Scholar 

  • Martin S, Drijfhout F (2009) A review of ant Cuticular hydrocarbons. J Chem Ecol 35:1151–1161

    CAS  PubMed  Google Scholar 

  • Nash DR, Boomsma JJ (2008) Communication between hosts and social parasites. In: d’Ettorre P, Hughes DP (eds) Sociobiology of communication: an interdisciplinary perspective. Oxford University Press, Oxford, pp 55–80

    Google Scholar 

  • Nehring V, Dani FR, Calamai L, Turillazzi S, Bohn H, Klass K-D, d’Ettorre P (2016) Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants. BMC Ecol 16:35

    PubMed  PubMed Central  Google Scholar 

  • Parmentier T, Dekoninck W, Wenseleers T (2017) Arthropods associate with their red wood ant host without matching Nestmate recognition cues. J Chem Ecol 43:644–661

    CAS  PubMed  Google Scholar 

  • Parmentier T, De Laender F, Wenseleers T, Bonte D (2018) Prudent behavior rather than chemical deception enables a parasite to exploit its ant host. Behav Ecol https://doi.org/10.1093/beheco/ary134

  • Provost E, Blight O, Tirard A, Renucci M (2008) Hydrocarbons and insects’ social physiology. In: Maes RP (ed) Insect physiology: NewResearch. Nova Science Publishers, Hauppauge, pp 19–72

    Google Scholar 

  • Reemer M, Stahls G (2013) Phylogenetic relationships of Microdontinae (Diptera: Syrphidae) based on molecular and morphological characters. Syst Entomol 38:661–688

    Google Scholar 

  • Remeer M (2013) Review and phylogenetic evaluation of associations between Microdontinae (Diptera: Syrphidae) and ants (Hymenoptera: Formicidae). Psyche. https://doi.org/10.1155/2013/538316

    Google Scholar 

  • Rotheray G, Gilbert F (1999) Phylogeny of Palaearctic Syrphidae (Diptera): evidence from larval stages. Zool J Linnean Soc 127:1–112

    Google Scholar 

  • Sala M, Casacci LP, Balletto E, Bonelli S, Barbero F (2014) Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant Colony resources. PLoS One 9:e94341. https://doi.org/10.1371/journal.pone.0094341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarparo G, Cerretti P, Mei M, Di Giulio A (2017) Detailed morphological descriptions of the immature stages of the ant parasite Microdon mutabilis (Diptera: Syrphidae: Microdontinae) and a discussion of its functional morphology, behaviour and host specificity. Eur J Entomol 114:565–586

    Google Scholar 

  • Schmid U (2004) Microdon rhenanus and Microdon eggeri var. major (Diptera, Syrphidae) revisited. Volucella 7:111–124

    Google Scholar 

  • Schönrogge K, Barr B, Wardlaw JC, Napper E, Gardner MG, Breen J, Elmes GW, Thomas JA (2002) When rare species become endangered: cryptic speciation in myrmecophilous hoverflies. Biol J Linn Soc 75:291–300

    Google Scholar 

  • Schönrogge K, Gardner MG, Elmes GW, Napper EKV, Simcox DJ, Wardlaw JC, Breen J, Barr B, Knapp JJ, Pickett JA, Thomas JA (2006) Host propagation permits extreme local adaptation in a social parasite of ants. Ecol Lett 9:1032–1040

    PubMed  Google Scholar 

  • Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405

    CAS  Google Scholar 

  • Speight MCD (2004) Fauna Europaea: Syrphidae. In Fauna Europaea: Diptera, Brachycera. In: Pape T (ed) Fauna Europaea. http://www.faunaeur.org. Accessed 26 June 2017

  • Speight MCD (2017) Species accounts of European Syrphidae. Syrph the net, the database of European Syrphidae (Diptera). Syrph the net publications, Dublin

  • Thomas JA, Schönrogge K, Elmes GW (2005) Specializations and host associations of social parasites of ants. In: Fellowes MDE, Holloway GJ, Rolff J (eds) Insect evolutionary ecology. CABI, Wallingford, pp 479–518

    Google Scholar 

  • van Zweden JS, d'Ettorre P (2010) The role of hydrocarbons in nestmate recognition. In: Blomquist G, Bagnères AG (eds) Insect hydrocarbons: biology. Biochemistry and Chemical Ecology. Cambridge University Press, Cambridge, pp 222–243

    Google Scholar 

  • von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC (2018) Chemical and behavioral integration of army ant-associated rove beetles – a comparison between specialists and generalists. Front Zool 15:8

    Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Witek M, Casacci LP, Barbero F, Patricelli D, Sala M, Bossi S, Maffei M, Woyciechowski M, Balletto E, Bonelli S (2013) Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol J Linn Soc 109:699–709

    Google Scholar 

  • Wolton R (2011) Observations on ecology and behaviour of Microdon myrmicae Schönrogge et al. (Diptera, Syrphidae), with a description of egg and early instar morphology. Dipterists Digest 18:55–67

    Google Scholar 

Download references

Acknowledgments

We are indebted to our friend Robert Wolton (UK) for the English revision of the text and for his precious comments and suggestions that widely improved the manuscript. We are very grateful to our colleagues Marco Molfini, Luigi Cao Pinna and Francesco Simone Mensa for their help during the field sampling and Chloé Leroy for her support during gas chromatography-mass spectrometry analysis. Electron microscopy analyses were done at L.I.M.E. (Laboratorio Interdipartimentale Microscopia Elettronica) of University of Roma Tre and funded by Department of Science Research Grants (CAL Di Giulio 2017) and the Grant of Excellence Departments, MIUR-Italy (ARTICOLO 1, COMMI 314 – 337 LEGGE 232/2016). P. d’Ettorre was funded by the French National Research Agency (ANR-14-CE18-0003, PHEROMOD). We are grateful to two anonymous referees for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Di Giulio.

Electronic supplementary material

ESM 1

(DOCX 451 kb)

ESM 2

(ASF 32984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarparo, G., d’Ettorre, P. & Di Giulio, A. Chemical Deception and Structural Adaptation in Microdon (Diptera, Syrphidae, Microdontinae), a Genus of Hoverflies Parasitic on Social Insects. J Chem Ecol 45, 959–971 (2019). https://doi.org/10.1007/s10886-019-01121-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-019-01121-0

Keywords

Navigation