Skip to main content

Advertisement

Log in

Synthesis of 2-oxoquinoline derivatives as dual pim and mTORC protein kinase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Compound VBT-5445 was identified as an inhibitor to block the association of Pim and the protein Enhancer of Decapping 3 (EDC3), a Pim substrate, which normally functions to enhance the decapping of messenger RNA (mRNA). It was also shown to inhibit both the Pim and mTORC protein kinases. The activity of this compound class can be fine-tuned by structural modification. A series of VBT analogs were designed, synthesized, and evaluated. These compounds decrease the growth of multiple cancer types, including pancreas, prostate, breast, lung, and leukemia. Notably, 6-methyl (GRG-1-31, 6d), 4-chloro (GRG-1-34, 6e), 4-Bromo (GRG-1-35, 6f), and phenylthio substituted (GRG-1-104, 6n) derivatives are highly potent at inhibiting tumor growth. The ability of these compounds to block cancer growth in vitro is highly correlated with their activity as mTORC inhibitors. The toxicity of GRG 1–34 is low in mice treated with twice-daily gavage for 30 days and did not induce weight loss. Pharmacokinetics of a single oral dose demonstrated a peak concentration at 0.5 h after gavage. In summary, further development of this compound class has the potential to inhibit important signaling pathways and impact cancer treatment.

Development of a Dual Pim and mTORC protein kinase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS. Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res. 2005;3:443–51.

    Article  CAS  Google Scholar 

  2. Beharry Z, Mahajan S, Zemskova M, Lin YW, Tholanikunnel BG, Xia ZP, et al. The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci USA. 2011;108:528–33.

    Article  CAS  Google Scholar 

  3. Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Therapeutics. 2015;151:41–9.

    Article  CAS  Google Scholar 

  4. Son JH, Singh N, Luevano LA, Padi SKR, Okumura K, Olive V, et al. Mechanisms Behind Resistance to P13K Inhibitor Treatment Induced by the PIM Kinase. Mol Cancer Therapeutics. 2018;17:2710–21.

    Article  Google Scholar 

  5. Amaravadi R, Thompson CB. The survival kinases Akt and Pim as potential pharmacological targets. J Clin Investig. 2005;115:2618–24.

    Article  CAS  Google Scholar 

  6. Hu XF, Li J, Vandervalk S, Wang ZP, Magnuson NS, Xing PX. PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. J Clin Investig. 2009;119:362–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cen B, Mahajan S, Wang WX, Kraft AS. Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res. 2013;73:3402–11.

    Article  CAS  Google Scholar 

  8. Le XN, Antony R, Razavi P, Treacy DJ, Luo F, Ghandi M, et al. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discov. 2016;6:1134–47.

    Article  CAS  Google Scholar 

  9. Braso-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-Domenech E, et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med. 2017;22:1303.

    Article  Google Scholar 

  10. Ren CN, Yang TT, Qiao PY, Wang L, Han X, Lv SJ, et al. PIM2 interacts with tristetraprolin and promotes breast can cer tumorigenesis. Mol Oncol. 2018;12:690–704.

    Article  CAS  Google Scholar 

  11. Warfel NA, Sainz AG, Song JH, Kraft AS. PIM kinase inhibitors kill hypoxic tumor cells by reducing Nrf2 signaling and increasing reactive oxygen species. Mol Cancer Ther. 2016;15:1637–47.

    Article  CAS  Google Scholar 

  12. Padi SKR, Singh N, Bearss JJ, Olive V, Song JH, Cardo-Vila M, et al. Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth. Proc Natl Acad Sci USA. 2019;116:20505–10.

    Article  CAS  Google Scholar 

  13. Song JH, Padi SKR, Luevano LA, Minden MD, DeAngelo DJ, Hardiman G, et al. Insulin receptor substrate 1 is a substrate of the Pim protein kinases. Oncotarget. 2016;7:20152–65.

    Article  Google Scholar 

  14. Bearss JJ, Padi SK, Singh N, Cardo-Vila M, Song JH, Mouneimne G, et al. EDC3 phosphorylation regulates growth and invasion through controlling P-body formation and dynamics. EMBO Rep. 2021;22:e50835.

    Article  CAS  Google Scholar 

  15. Badis G, Saveanu C, Fromont-Racine M, Jacquier A. Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell. 2004;15:5–15.

    Article  CAS  Google Scholar 

  16. Ling SHM, Decker CJ, Walsh MA, She M, Parker R, Song H. Crystal structure of human Edc3 and its functional implications. Mol Cell Biol. 2008;28:5965–76.

    Article  CAS  Google Scholar 

  17. Paquette DR, Tibble RW, Daifuku TS, Gross JD. Control of mRNA decapping by autoinhibition. Nucleic Acids Res. 2018;46:6318–29.

    Article  CAS  Google Scholar 

  18. Burg F, Breitenlechner S, Jandl C, Bach T. Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chem Sci. 2020;11:2121–9.

    Article  CAS  Google Scholar 

  19. Lin J, Lu W, Caravella JA, Campbell AM, Diebold RB, Ericsson A, et al. Discovery and optimization of quinolinone derivatives as potent, selective, and orally bioavailable mutant isocitrate dehydrogenase 1 (mIDH1) inhibitors. J Medicinal Chem. 2019;62:6575–96.

    Article  CAS  Google Scholar 

  20. Caravella JA, Lin J, Diebold RB, Campbell A-M, Ericsson A, Gustafson G, et al. Structure-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor. J Med Chem. 2020;63:1612–23.

    Article  CAS  Google Scholar 

  21. Li B-B, Zhang J, Chen F-F, Chen Q, Xu J-H, Zheng G-W. Direct reductive amination of ketones with amines by reductive aminases. Green Synth Catal. 2021;2:345–9.

    Article  Google Scholar 

  22. Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Reductive amination in the synthesis of pharmaceuticals. Chem Rev. 2019;119:11857–911.

    Article  CAS  Google Scholar 

  23. Bal BS, Childers WE Jr, Pinnick HW. Oxidation of α, β-un saturated aldehydes. Tetrahedron. 1981;37:2091–6.

    Article  CAS  Google Scholar 

  24. Ahmed I, Buchert R, Zhou M, Jiao X, Mittal K, Sheikh TI, et al. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet. 2015;24:3172–80.

    Article  CAS  Google Scholar 

  25. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. Rna. 2005;11:371–82.

    Article  CAS  Google Scholar 

  26. Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006;172:803–8.

    Article  CAS  Google Scholar 

  27. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007;8:9–22.

    Article  CAS  Google Scholar 

  28. Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood. 2005;105:4477–83.

    Article  CAS  Google Scholar 

  29. Vander Haar E, Lee S, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9:316–U126.

    Article  Google Scholar 

  30. Zhang F, Beharry ZM, Harris TE, Lilly MB, Smith CD, Mahajan S, et al. PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther. 2009;8:846–53.

    Article  CAS  Google Scholar 

  31. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014;4:64.

    Article  Google Scholar 

  32. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019;21:63–71.

    Article  CAS  Google Scholar 

  33. Mochizuki T, Kitanaka C, Noguchi K, Sugiyama A, Kagaya S, Chi SJ, et al. Pim-1 kinase stimulates c-Myc-mediated death signaling upstream of caspase-3 (CPP32)-like protease activation. Oncogene. 1997;15:1471–80.

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene. 2008;27:4809–19.

    Article  CAS  Google Scholar 

  35. Lin YW, Beharry ZM, Hill EG, Song JH, Wang WX, Xia ZP, et al. A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood. 2010;115:824–33.

    Article  CAS  Google Scholar 

  36. Forshell LP, Li YM, Forshell TZP, Rudelius M, Nilsson L, Keller U, et al. The direct Myc target Pim3 cooperates with other Pim kinases in supporting viability of Myc-induced B-cell lymphomas. Oncotarget. 2011;2:448–60.

    Article  Google Scholar 

  37. Saurabh K, Scherzer MT, Shah PP, Mims AS, Lockwood WW, Kraft AS, et al. The PIM family of oncoproteins: small kinases with huge implications in myeloid leukemogenesis and as therapeutic targets. Oncotarget. 2014;5:8503–14.

    Article  Google Scholar 

  38. Horiuchi D, Camarda R, Zhou AY, Yau C, Momcilovic O, Balakrishnan S, et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med. 2016;22:1321–9.

    Article  CAS  Google Scholar 

  39. Oshiro N, Takahashi R, Yoshino KI, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem. 2007;282:20329–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the support of the UACC Analytical Chemistry Shared Resource funded by P30 CA023074 for carrying out the pharmacokinetics experiments and importantly the Arizona Center for Drug Discovery and NIH 5R01GM130772 (WW). Additionally, we wish to acknowledge support from the George Mason University College of Science for the Reverse Phase Protein Array work.

Funding

This work was supported in part by R21CA241010-01A1 to ASK and KO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Andrew S. Kraft.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to Laurence H. Hurley to be published in a special issue of Medicinal Chemistry Research in honor of him.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnawali, G.R., Okumura, K., Perez, K. et al. Synthesis of 2-oxoquinoline derivatives as dual pim and mTORC protein kinase inhibitors. Med Chem Res 31, 1154–1175 (2022). https://doi.org/10.1007/s00044-022-02904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02904-z

Keywords

Navigation