Skip to main content

Advertisement

Log in

Synthesis and biological evaluation of pyrrolidine-functionalized nucleoside analogs

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Inhibition of viral reverse transcriptases and mammalian DNA polymerases by unnatural nucleoside analogs is a proven approach in antiviral and anticancer therapy, respectively. The majority of current nucleoside drugs retain the canonical nucleobase structure, which is fused to an unnatural sugar. In the present work, a series of novel pyrrolidine-functionalized purine and pyrimidine nucleosides was prepared via PyBOP-catalyzed SNAr addition-elimination reactions of commercial halogenated precursors and tested for their antiviral and anticancer activity. The newly synthesized nucleoside analogs showed limited biological activity, probably as a result of their poor cellular uptake and their inefficient bioactivation to the corresponding nucleoside monophosphates. A phosphoramidate prodrug had an improved cell permeability and was metabolized to the nucleoside monophosphate form in human cells, as revealed by HPLC-MS/MS analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 3
Fig. 4
Scheme 6
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mehellou Y, De Clercq E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem. 2010;53:521–38. https://doi.org/10.1021/jm900492g

    Article  CAS  PubMed  Google Scholar 

  2. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12:447–64. https://doi.org/10.1038/nrd4010

    Article  CAS  PubMed  Google Scholar 

  3. De Clercq E. Acyclic nucleoside phosphonates: past, present and future. Biochem Pharmacol. 2007;73:911–22. https://doi.org/10.1016/j.bcp.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  4. Pan X, Wang C, Wang F, Li P, Hu Z, Shan Y, et al. Development of 5-fluorouracil derivatives as anticancer agents. Curr Med Chem. 2011;18:4538–56. https://doi.org/10.2174/092986711797287584

    Article  CAS  PubMed  Google Scholar 

  5. Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009;109:2880–93. https://doi.org/10.1021/cr900028p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romeo G, Chiacchio U, Corsaro A, Merino P. Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem Rev. 2010;110:3337–70. https://doi.org/10.1021/cr800464r

    Article  CAS  PubMed  Google Scholar 

  7. Razonable RR. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc. 2011;86:1009–26. https://doi.org/10.4065/mcp.2011.0309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Menéndez-Arias L, Gago F. Antiviral agents: structural basis of action and rational design. Subcellular biochemistry. Springer: Netherlands; 2013.

  9. De Clercq E. Strategies in the design of antiviral drugs. Nat Rev Drug Discov. 2002;1:13–25. https://doi.org/10.1038/nrd703

    Article  CAS  PubMed  Google Scholar 

  10. De Clercq E. A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol. 2011;51:1–24. https://doi.org/10.1146/annurev-pharmtox-010510-100228

    Article  CAS  PubMed  Google Scholar 

  11. Berdis AJ. Inhibiting DNA polymerases as a therapeutic intervention against cancer. Front Mol Biosci. 2017;4:78. https://doi.org/10.3389/fmolb.2017.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song JH, Kim SR, Heo EY, Lee JY, Kim DE, Cho S, et al. Antiviral activity of gemcitabine against human rhinovirus in vitro and in vivo. Antiviral Res. 2017;145:6–13. https://doi.org/10.1016/j.antiviral.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  13. Moysan E, Bastiat G, Benoit JP. Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol Pharm. 2013;10:430–44. https://doi.org/10.1021/mp300370t

    Article  CAS  PubMed  Google Scholar 

  14. Jiang HY, Hickey RJ, Abdel-Aziz W, Malkas LH. Effects of gemcitabine and araC on in vitro DNA synthesis mediated by the human breast cell DNA synthesome. Cancer Chemother Pharmacol. 2000;45:320–8. https://doi.org/10.1007/s002800050047

    Article  CAS  PubMed  Google Scholar 

  15. Aye Y, Brignole EJ, Long MJ, Chittuluru J, Drennan CL, Asturias FJ, et al. Clofarabine targets the large subunit (alpha) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem Biol. 2012;19:799–805. https://doi.org/10.1016/j.chembiol.2012.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Daly MB, Roth ME, Bonnac L, Maldonado JO, Xie J, Clouser CL, et al. Dual anti-HIV mechanism of clofarabine. Retrovirology. 2016;13:20. https://doi.org/10.1186/s12977-016-0254-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu CK, Cutler SJ. Chemistry and antiviral activities of acyclonucleosides. J Heterocycl Chem. 1986;23:289–319. https://doi.org/10.1002/jhet.5570230201

    Article  CAS  Google Scholar 

  18. Holy A. Phosphonomethoxyalkyl analogs of nucleotides. Curr Pharm Des. 2003;9(31):2567–92. https://doi.org/10.2174/1381612033453668

    Article  CAS  PubMed  Google Scholar 

  19. Gao H, Mitra AK. Synthesis of acyclovir, ganciclovir and their prodrugs: a review. Synthesis-Stuttgart. 2000;2000:329–51. https://doi.org/10.1055/s-2000-6333

    Article  Google Scholar 

  20. Mieczkowski A, Roy V, Agrofoglio LA. Preparation of cyclonucleosides. Chem Rev. 2010;110:1828–56. https://doi.org/10.1021/cr900329y

    Article  CAS  PubMed  Google Scholar 

  21. Hertel LW, Kroin JS, Misner JW, Tustin JM. Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2-deoxy-2,2-difluoro-D-ribofuranosyl nucleosides. J Org Chem. 1988;53:2406–9. https://doi.org/10.1021/jo00246a002

    Article  CAS  Google Scholar 

  22. Chun BK, Schinazi RF, Cheng YC, Chu CK. Synthesis of 2 ‘,3 ‘-dideoxy-3 ‘-fluoro-L-ribonucleosides as potential antiviral agents from D-sorbitol. Carbohydr Res. 2000;328:49–59. https://doi.org/10.1016/S0008-6215(99)00312-2

    Article  CAS  PubMed  Google Scholar 

  23. Klumpp K, Kalayanov G, Ma H, Le Pogam S, Leveque V, Jiang WR, et al. 2’-deoxy-4’-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2’-alpha-hydroxyl groups. J Biol Chem. 2008;283:2167–75. https://doi.org/10.1074/jbc.M708929200

    Article  CAS  PubMed  Google Scholar 

  24. Hacksell U, Daves GD Jr. The chemistry and biochemistry of C-nucleosides and C-arylglycosides. Prog Med Chem. 1985;22:1–65. https://doi.org/10.1016/s0079-6468(08)70228-5

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Yu W, Fu L, He W, Wang Y, Chai B, et al. Design, synthesis, and biological evaluation of new 2′-deoxy-2′-fluoro-4′-triazole cytidine nucleosides as potent antiviral agents. Eur J Med Chem. 2013;63:739–45. https://doi.org/10.1016/j.ejmech.2013.02.042

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, Hu W, Wang S, Pan Z, Tao L, Guo X, et al. Synthesis of new 2’-deoxy-2’-fluoro-4’-azido nucleoside analogues as potent anti-HIV agents. Eur J Med Chem. 2011;46:4178–83. https://doi.org/10.1016/j.ejmech.2011.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo X, Li Y, Tao L, Wang Q, Wang S, Hu W, et al. Synthesis and anti-HIV-1 activity of 4-substituted-7-(2’-deoxy-2’-fluoro-4’-azido-beta-D-ribofuranosyl)pyrrolo[2,3-d]p yrimidine analogues. Bioorg Med Chem Lett. 2011;21:6770–2. https://doi.org/10.1016/j.bmcl.2011.09.040

    Article  CAS  PubMed  Google Scholar 

  28. Smith RA, Loeb LA, Preston BD. Lethal mutagenesis of HIV. Virus Res. 2005;107:215–28. https://doi.org/10.1016/j.virusres.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  29. Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antivir Res. 2010;85:210–31. https://doi.org/10.1016/j.antiviral.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  30. Murphy EL, Collier AC, Kalish LA, Assmann SF, Para MF, Flanigan TP, et al. Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease. Ann Intern Med. 2001;135:17–26. https://doi.org/10.7326/0003-4819-135-1-200107030-00005

    Article  CAS  PubMed  Google Scholar 

  31. Xia Y, Qu F, Peng L. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity. Mini Rev Med Chem. 2010;10:806–21. https://doi.org/10.2174/138955710791608316

    Article  CAS  PubMed  Google Scholar 

  32. Pratap R, Parrish D, Gunda P, Venkataraman D, Lakshman MK. Influence of biaryl phosphine structure on C-N and C-C bond formation. J Am Chem Soc. 2009;131:12240–9. https://doi.org/10.1021/ja902679b

    Article  CAS  PubMed  Google Scholar 

  33. Adamiak RW, Biala E, Skalski B. New, ionic side-products in oligonucleotide synthesis: formation and reactivity of fluorescent N-/purin-6-yl/pyridinium salts. Nucleic Acids Res. 1985;13:2989–3003. https://doi.org/10.1093/nar/13.8.2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin X, Robins MJ. Mild and efficient functionalization at C6 of purine 2’-deoxynucleosides and ribonucleosides. Org Lett. 2000;2:3497–9. https://doi.org/10.1021/ol000255h

    Article  CAS  PubMed  Google Scholar 

  35. Francom P, Janeba Z, Shibuya S, Robins MJ. Nucleic acid related compounds. 116. Nonaqueous diazotization of aminopurine nucleosides. Mechanistic considerations and efficient procedures with tert-butyl nitrite or sodium nitrite. J Org Chem. 2002;67:6788–96. https://doi.org/10.1021/jo0204101

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Robins MJ. Azoles as Suzuki cross-coupling leaving groups: syntheses of 6-arylpurine 2’-deoxynucleosides and nucleosides from 6-(imidazol-1-yl)- and 6-(1,2,4-triazol-4-yl)purine derivatives. Org Lett. 2004;6:3421–3. https://doi.org/10.1021/ol048490d

    Article  CAS  PubMed  Google Scholar 

  37. Janeba Z, Lin X, Robins MJ. Functionalization of guanosine and 2’-deoxyguanosine at C6: a modified Appel process and S(N)Ar displacement of imidazole. Nucleosides Nucleotides Nucleic Acids. 2004;23:137–47. https://doi.org/10.1081/ncn-120027823

    Article  CAS  PubMed  Google Scholar 

  38. Lakshman MK. Palladium-catalyzed C–N and C–C cross-couplings as versatile, new avenues for modifications of purine 2′-deoxynucleosides. J Organomet Chem. 2002;653:234–51. https://doi.org/10.1016/s0022-328x(02)01267-6

    Article  CAS  Google Scholar 

  39. Hocek M. Syntheses of purines bearing carbon substituents in positions 2, 6 or 8 by metal- or organometal-mediated C-C bond-forming reactions. Eur J Org Chem. 2003;2003:245–54. https://doi.org/10.1002/ejoc.200390025

    Article  Google Scholar 

  40. Lebreton J, Escudier JM, Arzel L, Len C. Synthesis of bicyclonucleosides having a C-C bridge. Chem Rev. 2010;110:3371–418. https://doi.org/10.1021/cr800465j

    Article  CAS  PubMed  Google Scholar 

  41. Wan ZK, Binnun E, Wilson DP, Lee J. A highly facile and efficient one-step synthesis of N6-adenosine and N6-2’-deoxyadenosine derivatives. Org Lett. 2005;7:5877–80. https://doi.org/10.1021/ol052424

    Article  CAS  PubMed  Google Scholar 

  42. Wan ZK, Wacharasindhu S, Binnun E, Mansour T. An efficient direct amination of cyclic amides and cyclic ureas. Org Lett. 2006;8:2425–8. https://doi.org/10.1021/ol060815y

    Article  CAS  PubMed  Google Scholar 

  43. Wan ZK, Wacharasindhu S, Levins CG, Lin M, Tabei K, Mansour TS. The scope and mechanism of phosphonium-mediated S(N)Ar reactions in heterocyclic amides and ureas. J Org Chem. 2007;72:10194–210. https://doi.org/10.1021/jo7020373

    Article  CAS  PubMed  Google Scholar 

  44. Seneviratne U, Antsypovich S, Goggin M, Dorr DQ, Guza R, Moser A, et al. Exocyclic deoxyadenosine adducts of 1,2,3,4-diepoxybutane: synthesis, structural elucidation, and mechanistic studies. Chem Res Toxicol. 2010;23:118–33. https://doi.org/10.1021/tx900312e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimizu B, Nishimura T, Ikehara M. Synthesis of α-adenosine 5’-monophosphate. Agric Biol Chem. 1967;31:637–9.

    CAS  Google Scholar 

  46. Boudou V, Kerremans L, De Bouvere B, Lescrinier E, Schepers G, Busson R, et al. Base pairing of anhydrohexitol nucleosides with 2,6-diaminopurine, 5-methylcytosine and uracil asbase moiety. Nucleic Acids Res. 1999;27:1450–6. https://doi.org/10.1093/nar/27.6.1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parker WB, White EL, Shaddix SC, Ross LJ, Buckheit RW Jr., Germany JM, et al. Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases alpha, beta, and gamma by the 5’-triphosphates of carbovir, 3’-azido-3’-deoxythymidine, 2’,3’-dideoxyguanosine and 3’-deoxythymidine. A novel RNA template for the evaluation of antiretroviral drugs. J Biol Chem. 1991;266:1754–62.

    Article  CAS  Google Scholar 

  48. Quirk Dorr DR, Vince R. Synthesis and biological evaluation of endocyclic 2’,3’-didehydro-2’,3’-dideoxymethanocarba adenosine. Nucleosides Nucleotides Nucleic Acids. 2002;21:665–80. https://doi.org/10.1081/NCN-120015724

    Article  CAS  PubMed  Google Scholar 

  49. Buckheit RW Jr., Watson K, Fliakas-Boltz V, Russell J, Loftus TL, Osterling MC, et al. SJ-3366, a unique and highly potent nonnucleoside reverse transcriptase inhibitor of human immunodeficiency virus type 1 (HIV-1) that also inhibits HIV-2. Antimicrob Agents Chemother. 2001;45:393–400. https://doi.org/10.1128/AAC.45.2.393-400.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gulakowski RJ, McMahon JB, Staley PG, Moran RA, Boyd MR. A semiautomated multiparameter approach for anti-HIV drug screening. J Virol Methods. 1991;33:87–100. https://doi.org/10.1016/0166-0934(91)90010-w

    Article  CAS  PubMed  Google Scholar 

  51. Buckheit RW Jr., Fliakas-Boltz V, Decker WD, Roberson JL, Pyle CA, White EL, et al. Biological and biochemical anti-HIV activity of the benzothiadiazine class of nonnucleoside reverse transcriptase inhibitors. Antiviral Res. 1994;25:43–56. https://doi.org/10.1016/0166-3542(94)90092-2

    Article  CAS  PubMed  Google Scholar 

  52. Buckheit RW Jr., Hollingshead MG, Germany-Decker J, White EL, McMahon JB, Allen LB, et al. Thiazolobenzimidazole: biological and biochemical anti-retroviral activity of a new nonnucleoside reverse transcriptase inhibitor. Antivir Res. 1993;21:247–65. https://doi.org/10.1016/0166-3542(93)90031-d

    Article  CAS  PubMed  Google Scholar 

  53. McLaren C, Ellis MN, Hunter GA. A colorimetric assay for the measurement of the sensitivity of herpes simplex viruses to antiviral agents. Antivir Res. 1983;3:223–34. https://doi.org/10.1016/0166-3542(83)90001-3

    Article  CAS  PubMed  Google Scholar 

  54. Wagner CR, Iyer VV, McIntee EJ. Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev. 2000;20:417–51. https://doi.org/10.1002/1098-1128(200011)20:6<417::Aid-med1>3.0.Co;2-z

    Article  CAS  PubMed  Google Scholar 

  55. Balzarini J, Naesens L, Aquaro S, Knispel T, Perno C, De Clercq E, et al. Intracellular metabolism of CycloSaligenyl 3’-azido-2’, 3’-dideoxythymidine monophosphate, a prodrug of 3’-azido-2’, 3’-dideoxythymidine (zidovudine). Mol Pharmacol. 1999;56:1354–61. https://doi.org/10.1124/mol.56.6.1354

    Article  CAS  PubMed  Google Scholar 

  56. Yang S, Pannecouque C, Lescrinier E, Giraut A, Herdewijn P. Synthesis and in vitro enzymatic and antiviral evaluation of phosphoramidate d4T derivatives as chain terminators. Org Biomol Chem. 2012;10:146–53. https://doi.org/10.1039/c1ob06214j

    Article  CAS  PubMed  Google Scholar 

  57. Chang SL, Griesgraber G, Wagner CR. Comparison of the antiviral activity of hydrophobic amino acid phosphoramidate monoesters of 2'3’-dideoxyadenosine (DDA) and 3’-azido-3’-deoxythymidine (AZT). Nucleosides Nucleotides Nucleic Acids. 2001;20:1571–82. https://doi.org/10.1081/NCN-100105248

    Article  CAS  PubMed  Google Scholar 

  58. Chang S, Griesgraber GW, Southern PJ, Wagner CR. Amino acid phosphoramidate monoesters of 3’-azido-3’-deoxythymidine: relationship between antiviral potency and intracellular metabolism. J Med Chem. 2001;44:223–31. https://doi.org/10.1021/jm000260r

    Article  CAS  PubMed  Google Scholar 

  59. McGuigan C, Madela K, Aljarah M, Bourdin C, Arrica M, Barrett E, et al. Phosphorodiamidates as a promising new phosphate prodrug motif for antiviral drug discovery: application to anti-HCV agents. J Med Chem. 2011;54:8632–45. https://doi.org/10.1021/jm2011673

    Article  CAS  PubMed  Google Scholar 

  60. De Clercq E, Field HJ. Antiviral prodrugs—the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol. 2006;147:1–11. https://doi.org/10.1038/sj.bjp.0706446

    Article  CAS  PubMed  Google Scholar 

  61. Zhang C, Chen Y, Ben K. An improved microtiter assay for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma. BMC Infect Dis. 2003;3:30. https://doi.org/10.1186/1471-2334-3-30

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Robert Vince (University of Minnesota) for his suggestion to conduct antiviral studies with pyrrolidine-substituted nucleosides and for his help with anti-HIV testing. We thank Profs. David Ferguson and Daniel Harki (University of Minnesota) for conducting the anticancer activity testing and Dr. Vijay Kumar (University of Minnesota) for his helpful edits on the final version of the manuscript. This work was supported in part by the Engebretson Grant for Drug Development from the University of Minnesota College of Pharmacy and a Grant-in-Aid grant from the University of Minnesota Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Y. Tretyakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seneviratne, U., Wickramaratne, S., Kotandeniya, D. et al. Synthesis and biological evaluation of pyrrolidine-functionalized nucleoside analogs. Med Chem Res 30, 483–499 (2021). https://doi.org/10.1007/s00044-021-02700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02700-1

Keywords

Navigation