Skip to main content

First and Second Generation Nucleoside Triphosphate Prodrugs: TriPPPro-Compounds for Antiviral Chemotherapy

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Currently, a number of biologically active nucleoside analogues are extensively used as antiviral, anticancer, antiparasitic, and antibacterial therapeutic agents. However, when considering viruses, their antiviral efficacy is strongly dependent on the intracellular conversion by virus-encoded or, in most cases, host cellular kinases to give the corresponding bioactive nucleoside analogue triphosphates. In this minireview, the recent work on the development of nucleoside triphosphate prodrugs, the so-called TriPPPro-approach is described. First generation TriPPPro-compounds bearing two biodegradable masking units attached to the γ-phosphate group were prepared using the phosphoramidite and H-phosphonate routes, respectively. These TriPPPro-compounds enter cells and deliver the nucleoside triphosphate analogues, and therefore they bypass all steps of the intracellular phosphorylation in contrast to their parent nucleoside analogues. Second generation TriPPPro-compounds comprising a non-cleavable γ-alkyl moiety in addition to a biodegradable prodrug moiety at the γ-phosphate or γ-phosphonate units, respectively, and d4T as a nucleoside analogue will be summarized as well. Such compounds formed γ-alkylated nucleoside triphosphate analogues by chemical hydrolysis or in cell extracts with high selectivity. These γ-alkylated nucleoside triphosphate derivatives proved to be highly resistant toward dephosphorylation and showed a superior selectivity to act as substrates for the viral HIV-RT as compared to three cellular DNA polymerases. The synthesis, the chemical and biological hydrolysis and the antiviral activity of these compounds will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahchop EL, Wainberg MA, Sloan RD, Tremblay CL (2012) Antiviral drug resistance and the need for development of new HIV-1 reverse transcriptase inhibitors. Antimicrob Agents Chemother 56:5000–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzarini J, Pauwels R, Baba M, Herdewijn P, De Clercq E, Broder S, Johns DG (1988) The in vitro and in vivo anti-retrovirus activity, and intracellular metabolism of 3′-azido-2′,3′-dideoxythymidine and 2′,3′-dideoxycytidine are highly dependent on the cell species. Biochem Pharmacol 37:897–903

    Article  CAS  PubMed  Google Scholar 

  • Balzarini J, Herdewijn P, De Clercq E (1989) Differential patterns of intracellular metabolism of 2′,3′-didehydro-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J Biol Chem 264:6127–6133

    Article  CAS  PubMed  Google Scholar 

  • Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentré F, Taburet A-M (2010) Intracellular pharmacokinetics of antiretroviral drugs in HIV infected patients, and their correlation with drug action. Clin Pharmacokinet 49:17–45

    Article  CAS  PubMed  Google Scholar 

  • Bonnaffé D, Dupraz B, Ughetto-Monfrin J, Namane A, Huynh Dinh T (1995a) Synthesis of acyl pyrophosphates – application to the synthesis of nucleotide lipophilic prodrugs. Tetrahedron Lett 36:531–534

    Article  Google Scholar 

  • Bonnaffé D, Dupraz B, Ughetto-Monfrin J, Namane A, Huynh Dinh T (1995b) Synthesis of nucleotide lipophilic prodrugs containing 2 inhibitors targeted against different phases of the HIV replication cycle. Nucleosides Nucleotides Nucleic Acids 14:783–787

    Article  Google Scholar 

  • Bonnaffé D, Dupraz B, Ughetto-Monfrin J, Namane A, Henin Y, Huynh Dinh T (1996) Potential lipophilic nucleotide prodrugs: synthesis, hydrolysis, and antiretroviral activity of AZT and d4T acyl nucleotides. J Org Chem 61:895–902

    Article  Google Scholar 

  • Boswell-Casteel RC, Hays FA (2017) Equilibrative nucleoside transporters-a review. Nucleosides Nucleotides Nucleic Acids 36:7–30

    Article  CAS  PubMed  Google Scholar 

  • Burton JR, Everson GT (2009) HCV NS5B polymerase inhibitors. Clin Liver Dis 13:453–465

    Article  PubMed  Google Scholar 

  • Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A (2020) SARS-CoV-2, SARS-CoV-1 and MERS-CoV viral load dynamics, duration of viral shedding and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2:e13–e22

    Article  PubMed  PubMed Central  Google Scholar 

  • Cihlar T, Ray AS (2010) Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antivir Res 85:39–58

    Article  CAS  PubMed  Google Scholar 

  • Deval J (2009) Antimicrobial strategies: inhibition of viral polymerases by 3′-hydroxyl nucleosides. Drugs 69:151–166

    Article  CAS  PubMed  Google Scholar 

  • Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J (2010) Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antivir Res 86:101–120

    Article  CAS  PubMed  Google Scholar 

  • El Safadi Y, Vivet-Boudou V, Marquet R (2007) HIV-1 reverse transcriptase inhibitors. Appl Microbiol Biotechnol 75:723–737

    Article  CAS  PubMed  Google Scholar 

  • Erion MD, Reddy KR, Boyer SH, Matelich MC, Gornez-Galeno J, Lemus RH, Ugarkar BG, Colby TJ, Schanzer J, van Poelje PD (2004) Design, synthesis, and characterization of a series of cytochrome P-450 3A-activated prodrugs (HepDirect prodrugs) useful for targeting phosph(on)ate-based drugs to the liver. J Am Chem Soc 126:5154–5163

    Article  CAS  PubMed  Google Scholar 

  • Furman PA, Fyfe JA, StClair MH, Weinhold K, Rideout JL, Freeman GA, Lehrman SN, Bolognesi DP, Broder S, Mitsuya H, Barry DW (1986) Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human-immunodeficiency-virus reverse-transcriptase. Proc Natl Acad Sci USA 83:8333–8337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE (2010) Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 48:2940–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gollnest T, de Oliveira TD, Schols D, Balzarini J, Meier C (2015) Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals. Nat Commun 6(8716)

    Google Scholar 

  • Gollnest T, de Oliveira TD, Rath A, Hauber I, Schols D, Balzarini J, Meier C (2016) Membrane-permeable triphosphate prodrugs of nucleoside analogues. Angew Chem Int Ed 55:5255–5258

    Article  CAS  Google Scholar 

  • Ho HT, Hitchcock MJM (1989) Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother 33:844–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hostetler KY, Stuhmiller LM, Lenting HBM, Vandenbosch H, Richman DD (1990) Synthesis and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides. J Biol Chem 265:6112–6117

    Article  CAS  PubMed  Google Scholar 

  • Hostetler KY, Richman DD, Carson DA, Stuhmiller LM, Vanwijk GMT, Vandenbosch H (1992) Greatly enhanced inhibition of human-immunodeficiency-virus type-1 replication in cem and Ht4-6c cells by 3′-deoxythymidine diphosphate dimyristoylglycerol, a lipid prodrug of 3′-deoxythymidine. Antimicrob Agents Chemother 36:2025–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hostetler KY, Parker S, Sridhar CN, Martin MJ, Li JL, Stuhmiller LM, Vanwijk GMT, Vandenbosch H, Gardner MF, Aldern KA, Richman DD (1993) Acyclovir diphosphate dimyristoylglycerol – a phospholipid prodrug with activity against acyclovir-resistant herpes-simplex virus. Proc Natl Acad Sci USA 90:11835–11839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huchting J, Vanderlinden E, Winkler M, Nasser H, Naesens L, Meier C (2018) Prodrugs of the phosphoribosylated forms of hydroxypyrazinecarboxamide pseudobase T-705 and its de-fluoro analogue T-1105 as potent influenza virus inhibitors. J Med Chem 61:6193–6210

    Article  CAS  PubMed  Google Scholar 

  • Jessen HJ, Schulz T, Balzarini J, Meier C (2008) Bioreversible protection of nucleoside diphosphates. Angew Chem Int Ed 47:8719–8722

    Article  CAS  Google Scholar 

  • Jia X, Schols D, Meier C (2020a) Anti-HIV-active nucleoside triphosphate prodrugs. J Med Chem 63:6003–6027

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Schols D, Meier C (2020b) Lipophilic triphosphate prodrugs of various nucleoside analogues. J Med Chem 63:6991–7007

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Weber S, Schols D, Meier C (2020c) Membrane permeable, bioreversibly modified prodrugs of nucleoside diphosphate-γ-phosphonates. J Med Chem 63:11990–12007

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Ganter B, Meier C (2021) Improving properties of the nucleobase analogs T-705/T-1105 as potential antiviral. Ann Rep Med Chem 57:1–47

    CAS  Google Scholar 

  • Jordan PC, Stevens SK, Deval J (2018) Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother 26:1–19

    Article  Google Scholar 

  • Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464

    Article  CAS  PubMed  Google Scholar 

  • Juliano AD, Roguski KM, Chang H (2018) 6631450H. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391:1285–1300

    Article  Google Scholar 

  • Kaner J, Schaack S (2016) Understanding Ebola: the 2014 epidemic. Glob Health 12:53–60

    Article  Google Scholar 

  • Kore AR, Xiao ZJ, Senthilvelan A, Charles I, Shanmugasundaram M, Mukundarajan S, Srinivasan B (2012a) An efficient synthesis of pyrimidine specific 2′-deoxynucleoside-5′-tetraphosphates. Nucleosides Nucleotides Nucleic Acids 31:567–573

    Article  CAS  PubMed  Google Scholar 

  • Kore AR, Shanmugasundaram M, Senthilvelan A, Srinivasan B (2012b) An improved protection-free one-pot chemical synthesis of 2′-deoxynucleoside-5′-triphosphates. Nucleosides Nucleotides Nucleic Acids 31:423–431

    Article  CAS  PubMed  Google Scholar 

  • Kreimeyer A, Ughetto Monfrin J, Namane A, Huynh-Dinh T (1996) Synthesis of acylphosphates of purine ribonucleosides. Tetrahedron Lett 37:8739–8742

    Article  CAS  Google Scholar 

  • Kreimeyer A, Andre F, Gouyette C, Huynh-Dinh T (1998) Transmembrane transport of adenosine 5′-triphosphate using a lipophilic cholesteryl derivative. Angew Chem Int Ed 37:2853–2855

    Article  CAS  Google Scholar 

  • Mehellou Y, Rattan HS, Balzarini J (2018) The ProTide prodrug technology: from the concept to the clinic. J Med Chem 61:2211–2226

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Balzarini J (2006) Application of the cycloSal-prodrug approach for improving the biological potential of phosphorylated biomolecules. Antivir Res 71:282–292

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Lorey M, De Clercq E, Balzarini J (1998) cycloSal-2′,3′-dideoxy-2′,3′-didehydrothymidine monophosphate (cycloSal-d4TMP): synthesis and antiviral evaluation of a new d4TMP delivery system. J Med Chem 41:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Jessen HJ, Schulz T, Weinschenk L, Pertenbreiter F, Balzarini J (2015) Rational development of nucleoside diphosphate prodrugs: DiPPro-Compounds. Curr Med Chem 22:3933–3950

    Article  CAS  PubMed  Google Scholar 

  • Mohamady S, Jakeman DL (2005) An improved method for the synthesis of nucleoside triphosphate analogues. J Org Chem 70:10588–10591

    Article  CAS  PubMed  Google Scholar 

  • Mohamady S, Taylor SD (2011) General procedure for the synthesis of dinucleoside polyphosphates. J Org Chem 76:6344–6349

    Article  CAS  PubMed  Google Scholar 

  • Nack T, de Oliveira TD, Weber S, Schols D, Balzarini J, Meier C (2020) γ-Ketobenzyl-modified nucleoside triphosphate prodrugs as potential antivirals. J Med Chem 63:13745–13761

    Article  CAS  PubMed  Google Scholar 

  • Paff MT, Averett DR, Prus KL, Miller WH, Nelson DJ (1994) Intracellular metabolism of(−) and (+)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine in Hepg2 derivative 2.2.15 (subclone P5a) Cells. Antimicrob Agents Chemother 38:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastuch-Gawolek G, Gillner D, Krol E, Walczak K, Wandzik I (2019) Selected nucleos(t)idebased prescribed drugs and their multi-target activity. Eur J Pharmacol 865:172747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertenbreiter F, Balzarini J, Meier C (2015) Nucleoside mono- and diphosphate prodrugs of 2′,3′-dideoxyuridine and 2′,3′-dideoxy-2′,3′-didehydrouridine. Chem Med Chem 10:94–106

    Article  CAS  PubMed  Google Scholar 

  • Peyrottes S, Egron D, Lefebvre I, Gosselin G, Imbach JL, Perigaud C (2004) Sate pronucleotide approaches: an overview. Mini-Rev Med Chem 4:395–408

    Article  CAS  PubMed  Google Scholar 

  • Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF (2014) Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 114:9154–9218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puech F, Gosselin G, Lefebvre I, Pompon A, Aubertin AM, Kirn A, Imbach JL (1993) Intracellular delivery of nucleoside monophosphates through a reductase-mediated activation process. Antivir Res 22:155–174

    Article  CAS  PubMed  Google Scholar 

  • Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K, Yatoo MI, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 28:174–184

    CAS  PubMed  Google Scholar 

  • Roll PM, Weinfeld H, Carroll E, Brown GB (1956) Utilization of nucleotides by the mammal. IV. Triply labeled purine nucleotides. J Biol Chem 220:439–454

    Article  CAS  PubMed  Google Scholar 

  • Schulz T, Balzarini J, Meier C (2014) The DiPPro approach: synthesis, hydrolysis, and antiviral activity of lipophilic d4T diphosphate prodrugs. Chem Med Chem 9:762–775

    Article  CAS  PubMed  Google Scholar 

  • Seley-Radtke KL, Yates MK (2018) The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antivir Res 154:66–86

    Article  CAS  PubMed  Google Scholar 

  • Sowa T, Ouchi S (1975) Facile synthesis of 5′-nucleotides by selective phosphorylation of a primary hydroxyl group of nucleosides with phosphoryl chloride. Bull Chem Soc Jpn 48:2084–2090

    Article  CAS  Google Scholar 

  • Sulkowski MS, Gardiner DF, Rodriguez-Torres M, Reddy KR, Hassanein T, Jacobson I, Lawitz E, Lok AS, Hinestrosa F, Thuluvath PJ, Schwartz H, Nelson DR, Everson GT, Eley T, Wind-Rotolo M, Huang SP, Gao M, Hernandez D, McPhee F, Sherman D, Hindes R, Symonds W, Pasquinelli C, Grasela DM (2014) Daclatasvir plus Sofosbuvir for previously treated or untreated chronic HCV infection. N Engl J Med 370:211–221

    Article  CAS  PubMed  Google Scholar 

  • Tan XL, Chu CK, Boudinot FD (1999) Development and optimization of anti-HIV nucleoside analogs and prodrugs: a review of their cellular pharmacology, structure-activity relationships and pharmacokinetics. Adv Drug Deliver Rev 39:117–151

    Article  CAS  Google Scholar 

  • Thomson W, Nicholls D, Irwin WJ, Almushadani JS, Freeman S, Karpas A, Petrik J, Mahmood N, Hay AJ (1993) Synthesis, bioactivation and anti-HIV activity of the bis(4-acyloxybenzyl) and mono(4-acyloxybenzyl) esters of the 5′-monophosphate of AZT. J Chem Soc Perkin Trans 1(11):1239–1245

    Article  Google Scholar 

  • Van Rompay AR, Johansson M, Karlsson A (2000) Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol Ther 87:189–198

    Article  PubMed  Google Scholar 

  • van Wijk GMT, Hostetler KY, van den Bosch H (1991) Lipid conjugates of antiretroviral: release of antiretroviral nucleoside monophosphate by a nucleoside diphosphate diglyceride hydrolase activity from rat liver mitochondria. Biochim Biophys Acta Lipids Lipid Metab 1084:307–310

    Article  Google Scholar 

  • Van Wijk GMT, Hostetler KY, Kroneman E, Richman DD, Sridhar CN, Kumar R, van den Bosch H (1994) Synthesis and antiviral activity of 3′-azido-3′-deoxythymidine triphosphate distearoylglycerol – a novel phospholipid conjugate of the anti-HiV agent AZT. Chem Phys Lipids 70:213–222

    Article  PubMed  Google Scholar 

  • Vukadinovic D, Boge NPH, Balzarini J, Meier C (2005) “Lock-in” modified cycloSal nucleotides – the second generation of cycloSal prodrugs. Nucleosides Nucleotides Nucleic Acids 24:939–942

    Article  CAS  PubMed  Google Scholar 

  • Warnecke S, Meier C (2009) Synthesis of nucleoside di- and triphosphates and dinucleoside polyphosphates with cycloSal-Nucleotides. J Org Chem 74:3024–3030

    Article  CAS  PubMed  Google Scholar 

  • Weinschenk L, Schols D, Balzarini J, Meier C (2015) Nucleoside diphosphate prodrugs: nonsymmetric DiPPro-nucleotides. J Med Chem 58:6114–6130

    Article  CAS  PubMed  Google Scholar 

  • WHO Coronavirus (COVID-19) Dashboard 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 9 Jan 2022

  • Woldemeskel BA, Kwaa AK, Garliss CC, Laeyendecker O, Ray SC, Blankson JN (2020) Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. J Clin Investig 130:6631–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia HJ, Xie XP, Shan C, Shi PY (2018) Potential mechanisms for enhanced Zika epidemic and disease. ACS Infect Dis 4:656–659

    Article  CAS  PubMed  Google Scholar 

  • Yates MK, Seley-Radtke KL (2018) The evolution of antiviral nucleoside analogues: a review for chemists and non-chemists. Part II: complex modifications to the nucleoside scaffold. Antivir Res 162:5–21

    Article  PubMed  Google Scholar 

  • Zhao CL, Jia X, Schols D, Balzarini J, Meier C (2020a) γ-Non-symmetrically dimasked TriPPPro-prodrugs as potential antiviral agents against HIV. Chem Med Chem 16:499–512

    Article  PubMed  Google Scholar 

  • Zhao CL, Weber S, Schols D, Balzarini J, Meier C (2020b) Prodrugs of γ-alkyl-modified nucleoside triphosphates: improved inhibition of HIV reverse transcriptase. Angew Chem Int Ed 59:22063–22071

    Article  CAS  Google Scholar 

  • Zhu Z, Ho HT, Hitchcock MJ, Sommadossi JP (1990) Cellular pharmacology of 2′,3′-didehydro-2′,3′-dideoxythymidine (d4T) in human peripheral-blood mononuclear-cells. Biochem Pharmacol 39:R15–R19

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Dutschman GE, Liu SH, Bridges EG, Cheng YC (1998) Anti-hepatitis B virus activity and metabolism of 2′,3′-dideoxy-2′,3′-didehydro-beta-L(-)-5-fluorocytidine. Antimicrob Agents Chemother 42:1805–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Zhang DY, Wang WL, Li XW, Yang B, Song JD, Zhao X, Huang BY, Shi WF, Lu RJ, Niu PH, Zhan FX, Ma XJ, Wang DY, Xu WB, Wu GZ, Gao GGF, Tan WJ (2020) Coronavirus, C. N. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med 382:727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Meier .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jia, X., Zhao, C., Meier, C. (2022). First and Second Generation Nucleoside Triphosphate Prodrugs: TriPPPro-Compounds for Antiviral Chemotherapy. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics