Skip to main content
Log in

Littlewood–Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let \(p(\cdot ):\ {{\mathbb {R}}}^n\rightarrow (0,\infty ]\) be a variable exponent function satisfying the globally log-Hölder continuous condition, \(q\in (0,\infty ]\) and A be a general expansive matrix on \({\mathbb {R}}^n\). Let \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) be the anisotropic variable Hardy–Lorentz space associated with A defined via the radial grand maximal function. In this article, the authors characterize \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) by means of the Littlewood–Paley g-function or the Littlewood–Paley \(g_\lambda ^*\)-function via first establishing an anisotropic Fefferman–Stein vector-valued inequality on the variable Lorentz space \(L^{p(\cdot ),q}({\mathbb {R}}^n)\). Moreover, the finite atomic characterization of \(H_A^{p(\cdot ),q}({{\mathbb {R}}}^n)\) is also obtained. As applications, the authors then establish a criterion on the boundedness of sublinear operators from \(H^{p(\cdot ),q}_A({\mathbb {R}}^n)\) into a quasi-Banach space. Applying this criterion, the authors show that the maximal operators of the Bochner–Riesz and the Weierstrass means are bounded from \(H^{p(\cdot ),q}_A({\mathbb {R}}^n)\) to \(L^{p(\cdot ),q}({\mathbb {R}}^n)\) and, as consequences, some almost everywhere and norm convergences of these Bochner–Riesz and Weierstrass means are also obtained. These results on the Bochner–Riesz and the Weierstrass means are new even in the isotropic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Shammala, W., Torchinsky, A.: The Hardy-Lorentz spaces \(H^{p, q}({\mathbb{R}}^n)\). Stud. Math. 182, 283–294 (2007)

    Article  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almeida, A., Caetano, A.M.: Generalized Hardy spaces. Acta Math. Sin. (Engl. Ser.) 26, 1673–1692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Almeida, A., Harjulehto, P., Höstä, P., Lukkari, T.: Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Ann. Mat. Pura Appl. (4) 194, 405–424 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Almeida, V., Betancor, J.J., Rodríguez-Mesa, L.: Anisotropic Hardy-Lorentz spaces with variable exponents. Can. J. Math. 69, 1219–1273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Álvarez, J.: \(H^p\) and weak \(H^p\) continuity of Calderón-Zygmund type operators. In: Fourier Analysis, Lecture Notes in Pure and Appl. Math., vol. 157, pp. 17-34, Dekker, New York (1994)

  9. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer, Berlin (1976)

  11. Bownik, M.: Anisotropic Hardy Spaces and Wavelets, Mem. Amer. Math. Soc. 164 , no. 781 (2003)

  12. Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57, 3065–3100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Breit, D., Diening, L., Schwarzacher, S.: Finite element approximation of the \(p(\cdot )\)-Laplacian. SIAM J. Numer. Anal. 53, 551–572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, Volume 1: One-Dimensional Theory, Pure and Applied Mathematics, vol. 40. Academic Press, New York-London (1971)

  16. Calderón, A.-P.: Intermediate spaces and interpolation. The complex method. Studia Math. 24, 113–190 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Calderón, A.-P.: Commutators of singular integral operators. Proc. Natl. Acad. Sci. 53, 1092–1099 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Calderón, A.-P.: An atomic decomposition of distributions in parabolic \(H^p\) spaces. Adv. Math. 25, 216–225 (1977)

    Article  MATH  Google Scholar 

  19. Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, 101–171 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de certaines intégrales singulières. Lecture Notes in Mathematics, vol. 242, Springer, Berlin (1971)

  24. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)

    MATH  Google Scholar 

  26. Cruz-Uribe, D., Wang, L.-A.D.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Dekel, S., Han, Y., Petrushev, P.: Anisotropic meshless frames on \({\mathbb{R}}^n\). J. Fourier Anal. Appl. 15, 634–662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Diening, L., Schwarzacher, S.: Global gradient estimates for the \(p(\cdot )\)-Laplacian. Nonlinear Anal. 106, 70–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Diening, L., Harjulehto, P., Hästö, P., R\(\mathring{\rm u}\)žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. Springer, Heidelberg (2011)

  32. Ding, Y., Sato, S.: Littlewood-Paley functions on homogeneous groups. Forum Math. 28, 43–55 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Fan, X., He, J., Li, B., Yang, D.: Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces. Sci. China Math. 60, 2093–2154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fefferman, R., Soria, F.: The spaces weak \(H^1\). Stud. Math. 85, 1–16 (1987)

    Article  Google Scholar 

  35. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fefferman, C., Rivière, N.M., Sagher, Y.: Interpolation between \(H^p\) spaces: the real method. Trans. Am. Math. Soc. 191, 75–81 (1974)

    MATH  Google Scholar 

  37. Feichtinger, H.G., Weisz, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Cambridge Philos. Soc. 140, 509–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28. Princeton University Press, University of Tokyo Press, Princeton, NJ (1982)

    MATH  Google Scholar 

  39. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and The Study of Function Spaces. In: CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1991)

  40. Gát, G.: Pointwise convergence of cone-like restricted two-dimensional \((C,1)\) means of trigonometric Fourier series. J. Approx. Theory 149, 74–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gát, G.: Almost everywhere convergence of sequences of Cesàro and Riesz means of integrable functions with respect to the multidimensional Walsh system. Acta Math. Sin. (Engl. Ser.) 30, 311–322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Goginava, U.: Marcinkiewicz-Fejer means of \(d\)-dimensional Walsh-Fourier series. J. Math. Anal. Appl. 307, 206–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Goginava, U.: Almost everywhere convergence of \((C,\alpha )\)-means of cubical partial sums of \(d\)-dimensional Walsh-Fourier series. J. Approx. Theory 141, 8–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  45. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  46. Grafakos, L., Liu, L., Yang, D.: Maximal function characterizations of Hardy spaces on RD-spaces and their applications. Sci. China Ser. A 51, 2253–2284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Han, Y., Müller, D., Yang, D.: Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Han, Y., Müller, D., Yang, D.: A Theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr. Appl. Anal., Art. ID 893409 (2008)

  49. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hunt, R.A.: On the convergence of Fourier series. In: Orthogonal Expansions and Their Continuous Analogues, Proc. Conf. Edwardsville, Ill., 1967, pp. 235–255. Illinois Univ. Press, Carbondale (1968)

  51. Ioku, N., Ishige, K., Yanagida, E.: Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups. J. Math. Pures Appl. (9) 103, 900–923 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jakab, T., Mitrea, M.: Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces. Math. Res. Lett. 13, 825–831 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jiao, Y., Zuo, Y., Zhou, D., Wu, L.: Variable Hardy-Lorentz spaces \(H^{p(\cdot ),q}(\mathbb{R}^{n})\) (submitted)

  54. Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287, 938–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ky, L.D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equ. Oper. Theory 78, 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity 16, 213–244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, B., Bownik, M., Yang, D.: Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J. Funct. Anal. 266, 2611–2661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liang, Y., Huang, J., Yang, D.: New real-variable characterizations of Musielak-Orlicz Hardy spaces. J. Math. Anal. Appl. 395, 413–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liang, Y., Yang, D., Jiang, R.: Weak Musielak-Orlicz Hardy spaces and applications. Math. Nachr. 289, 634–677 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lions, J.-L., Peetre, J.: Sur une classe despaces dinterpolation (French). Inst. Hautes tudes Sci. Publ. Math. 19, 5–68 (1964)

    Article  Google Scholar 

  62. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series. J. Lond. Math. Soc. 6, 230–233 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  63. Liu, H.: The weak \(H^p\) spaces on homogeneous groups. In: Harmonic Analysis (Tianjin, 1988), Lecture Notes in Math., vol. 1494, pp. 113–118. Springer, Berlin (1991)

  64. Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications. Sci. China Math. 59, 1669–1720 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456, 356–393 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces. Acta Math. Sci. B 38, 1–33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  67. Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of weighted anisotropic Triebel-Lizorkin spaces via averages on balls (submitted)

  68. Lorentz, G.G.: Some new functional spaces. Ann. Math. (2) 51, 37–55 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  69. Lorentz, G.G.: On the theory of spaces \(\Lambda \). Pac. J. Math. 1, 411–429 (1951)

    Article  MATH  Google Scholar 

  70. Lu, S.-Z.: Four Lectures on Real \(H^p\) Spaces. World Scientific Publishing Co., Inc, River Edge, NJ (1995)

    Book  MATH  Google Scholar 

  71. Lu, S.-Z., Yan, D.: Bochner-Riesz Means on Euclidean Spaces. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2013)

    Book  MATH  Google Scholar 

  72. Meda, S., Sjögren, P., Vallarino, M.: On the \(H^1\)-\(L^1\) boundedness of operators. Proc. Am. Math. Soc. 136, 2921–2931 (2008)

    Article  MATH  Google Scholar 

  73. Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. In: Interpolation Spaces and Allied Topics in Analysis (Lund, 1983). Lecture Notes in Math, vol. 1070, pp. 183–201. Springer, Berlin (1984)

  74. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math, vol. 1034. Springer, Berlin (1983)

    MATH  Google Scholar 

  75. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Nakano, H.: Modulared Semi-ordered Linear Spaces. Maruzen Co., Ltd, Tokyo (1950)

    MATH  Google Scholar 

  77. Nakano, H.: Topology of Linear Topological Spaces. Maruzen Co., Ltd, Tokyo (1951)

    Google Scholar 

  78. Noi, T.: Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents. Rev. Mat. Complut. 29, 341–404 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. Noi, T., Sawano, Y.: Complex interpolation of Besov spaces and Triebel-Lizorkin spaces with variable exponents. J. Math. Anal. Appl. 387, 676–690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. (JEMS) 14, 421–464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–212 (1931)

    Article  MATH  Google Scholar 

  82. Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Pol. A 8, 207–220 (1932)

    MATH  Google Scholar 

  83. Parilov, D.: Two theorems on the Hardy-Lorentz classes \(H^{1,q}\), (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 327 (2005), Issled. po Linein. Oper. i Teor. Funkts. 33, 150–167, 238; translation in J. Math. Sci. (N. Y.) 139, 6447–6456 (2006)

  84. Peetre, J.: Nouvelles propriétés d’espaces d’interpolation. C. R. Acad. Sci. Paris 256, 1424–1426 (1963)

    MathSciNet  MATH  Google Scholar 

  85. Persson, L.-E., Tephnadze, G., Wall, P.: Maximal operators of Vilenkin-Nörlund means. J. Fourier Anal. Appl. 21, 76–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  86. Phuc, N.C.: The Navier-Stokes equations in nonendpoint borderline Lorentz spaces. J. Math. Fluid Mech. 17, 741–760 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  87. R\(\mathring{\rm u}\)žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

  88. Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl. Trois. 5, 471–473 (1957)

    MathSciNet  MATH  Google Scholar 

  89. Sato, S.: Characterization of parabolic Hardy spaces by Littlewood-Paley functions. arXiv: 1607.03645

  90. Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operator. Integral Equ. Oper. Theory 77, 123–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  91. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    MATH  Google Scholar 

  92. Simon, P.: Cesaro summability with respect to two-parameter Walsh systems. Monatsh. Math. 131, 321–334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  93. Simon, P.: \((C,\alpha )\) summability of Walsh-Kaczmarz-Fourier series. J. Approx. Theory 127, 39–60 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  94. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of Timothy S. Murphy, Princeton Mathematical Series, Monographs in Harmonic Analysis, III, vol. 43. Princeton University Press, Princeton, NJ (1993)

  95. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables, I: the theory of \(H^p\) spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  96. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton, NJ (1971)

    MATH  Google Scholar 

  97. Stein, E.M., Taibleson, M.H., Weiss, G.: Weak type estimates for maximal operators on certain \(H^p\) classes. In: Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), Rend. Circ. Mat. Palermo (2), suppl. 1, 81–97 (1981)

  98. Tang, L.: \(L^{p(\cdot ),\lambda (\cdot )}\) regularity for fully nonlinear elliptic equations. Nonlinear Anal. 149, 117–129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  99. Tiirola, J.: Image decompositions using spaces of variable smoothness and integrability. SIAM J. Imaging Sci. 7, 1558–1587 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  100. Triebel, H.: Theory of Function Spaces. II. Birkhäuser Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  101. Triebel, H.: Theory of Function Spaces. III. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  102. Triebel, H.: Tempered Homogeneous Function Spaces. European Mathematical Society (EMS), Zürich, EMS Series of Lectures in Mathematics (2015)

  103. Trigub, R.M., Belinsky, E.S.: Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  104. Ullrich, T.: Continuous characterization of Besov-Lizorkin-Triebel space and new interpretations as coorbits. J. Funct. Space Appl., Art. ID 163213, 47 pp (2012)

  105. Vybíral, J.: Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Ann. Acad. Sci. Fenn. Math. 34, 529–544 (2009)

    MathSciNet  MATH  Google Scholar 

  106. Weisz, F.: Summability of Multi-dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications, vol. 541. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  107. Weisz, F.: Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory 7, 1–179 (2012)

    MathSciNet  MATH  Google Scholar 

  108. Weisz, F.: Lebesgue points of two-dimensional Fourier transforms and strong summability. J. Fourier Anal. Appl. 21, 885–914 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  109. Weisz, F.: Convergence and Summability of Fourier Transforms and Hardy Spaces. Birkhäuser, Basel (2017)

    Book  MATH  Google Scholar 

  110. Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)

    MathSciNet  MATH  Google Scholar 

  111. Xu, J.: The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces. Integr. Transform Spec. Funct. 19, 599–605 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  112. Yan, X., Yang, D., Yuan, Y., Zhuo, C.: Variable weak Hardy spaces and thier applications. J. Funct. Anal. 271, 2822–2887 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  113. Yang, D., Zhou, Y.: Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J. Math. Anal. Appl. 339, 622–635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  114. Yang, D., Zhou, Y.: A boundedness criterion via atoms for linear operators in Hardy spaces. Constr. Approx. 29, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  115. Yang, D., Zhou, Y.: New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscripta Math. 134, 59–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  116. Yang, D., Yang, Do, Hu, G.: The Hardy Space \(H^1\) with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, vol. 2084. Springer, Cham (2013)

    Book  MATH  Google Scholar 

  117. Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269, 1840–1898 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  118. Yang, D., Zhuo, C., Nakai, E.: Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Complut. 29, 245–270 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  119. Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Springer, Cham (2017)

    MATH  Google Scholar 

  120. Zhuo, C., Yang, D., Liang, Y.: Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 39, 1541–1577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  121. Zhuo, C., Yang, D., Yuan, W.: Interpolation between \(H^{p(\cdot )}({\mathbb{R}^n) and L^{\infty }(\mathbb{R}}^n)\): real method. J. Geom. Anal. (2017). arXiv: 1703.05527

Download references

Acknowledgements

Jun Liu would like to express his deep thanks to Professor Ciqiang Zhuo for several useful conversations on Lemma 3.5 which is an important tool of this article and is of independent interests. Wen Yuan would like to thank Professor Marcin Bownik for a helpful discussion on the subject of this article. The authors would also like to thank both referees for their several stimulating remarks which do improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yuan.

Additional information

Communicated by Hans G. Feichtinger.

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11571039, 11726621, 11761131002 and 11471042) and also by the Hungarian Scientific Research Funds (OTKA) No. K115804.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Weisz, F., Yang, D. et al. Littlewood–Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications. J Fourier Anal Appl 25, 874–922 (2019). https://doi.org/10.1007/s00041-018-9609-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9609-3

Keywords

Mathematics Subject Classification

Navigation