Skip to main content
Log in

Maximal Operators of Vilenkin–Nörlund Means

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we prove and discuss some new \(\left( H_{p},weak-L_{p}\right) \) type inequalities of maximal operators of Vilenkin–Nörlund means with monotone coefficients. We also apply these results to prove a.e. convergence of such Vilenkin–Nörlund means. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blahota I., Tephnadze G., A note on maximal operators of Vilenkin-Nörlund means. Acta Math. Acad. Paedagog. Nyházi. (to appear).

  2. Blahota, I., Gát, G., Goginava, U.: Maximal operators of Fejér means of Vilenkin–Fourier series, JIPAM. J. Inequal. Pure Appl. Math 7(4), 149 (2006)

    MathSciNet  Google Scholar 

  3. Blahota, I., Gát, G., Goginava, U.: Maximal operators of Fejér means of double Vilenkin–Fourier series. Colloq. Math. 107(2), 287–296 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blahota, I., Gát, G.: Norm summability of Nö rlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl. 24(1), 1–17 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fine, J.: Cesáro summability of Walsh–Fourier series. Proc. Nat. Acad. Sci. USA 41, 558–591 (1955)

    Article  Google Scholar 

  6. Fujii, N.: A maximal inequality for \(H^{1}\)-functions on a generalized Walsh–Paley group. Proc. Amer. Math. Soc. 77(1), 111–116 (1979)

    MATH  MathSciNet  Google Scholar 

  7. Gát, G.: Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hung. 61, 131–149 (1993)

    Article  MATH  Google Scholar 

  8. Gát, G., Goginava, U.: Uniform and L-convergence of logarithmic means of Walsh–Fourier series. Acta Math. Sin. Engl. Ser. 2, 497–506 (2006)

    Article  Google Scholar 

  9. Gát, G., Goginava, U.: On the divergence of Nörlund logarithmic means of Walsh–Fourier series, (English summary). Acta Math. Sin. Engl. Ser. 25(6), 903–916 (2006)

    Article  Google Scholar 

  10. Gát, G., Goginava, U.: A weak type inequality for the maximal operator of \((C,\alpha )\)-means of Fourier series with respect to the Walsh–Kaczmarz system. Acta Math. Hung. 125(1–2), 65–83 (2009)

    Article  MATH  Google Scholar 

  11. Goginava, U.: On the approximation properties of Cesá ro means of negative order of Walsh–Fourier series, (English summary). J. Approx. Theory 115(1), 9–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goginava, U.: Almost everywhere convergence of \( (C,\alpha )\)-means of cubical partial sums of d-dimensional Walsh-Fourier series. J. Approx. Theory 141(1), 8–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goginava, U.: The maximal operator of the \((C,\alpha ) \) means of the Walsh–Fourier series. Ann. Univ. Sci. Budapest. Sect. Comput. 26, 127–135 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Goginava, U.: The maximal operator of Marcinkiewicz-Fejé r means of the d-dimensional Walsh–Fourier series, (English summary) East. J. Approx. 12(3), 295–302 (2006)

    MathSciNet  Google Scholar 

  15. Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific Publishing Co. Inc., Singapore (2003)

    Book  MATH  Google Scholar 

  16. Marcinkiewicz, I., Zygmund, A.: On the summability of double Fourier series. Fund. Math. 32, 112–132 (1939)

    Google Scholar 

  17. Meskhi, A., Kokilashvili, V., Persson, L.-E.: Weighted norm inequaities with general kernels. J. Math. Inequal. 12(3), 473–485 (2009)

    Google Scholar 

  18. Moore, C.N.: Summable Series and Convergence Factors. Dover Publications, Inc., New York (1966)

    MATH  Google Scholar 

  19. Móricz, F., Siddiqi, A.: Approximation by Nö rlund means of Walsh–Fourier series, (English summary). J. Approx. Theory 70(3), 375–389 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nagy, K.: Approximation by Cesáro means of negative order of Walsh–Kaczmarz–Fourier series. East J. Approx. 16(3), 297–311 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Nagy, K.: Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series. Anal. Math. 36(4), 299–319 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nagy, K.: Approximation by Nörlund means of Walsh–Kaczmarz–Fourier series. Georgian Math. J. 18(1), 147–162 (2011)

    MATH  MathSciNet  Google Scholar 

  23. Nagy, K.: Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions. Math. Inequal. Appl. 15(2), 301–322 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Pál, J., Simon, P.: On a generalization of the concept of derivative. Acta Math. Acad. Sci. Hung. 29(1–2), 155–164 (1977)

    Article  MATH  Google Scholar 

  25. Schipp, F.: Certain rearrangements of series in the Walsh system, (Russian). Math. Zametki 18(2), 193–201 (1975)

    MATH  MathSciNet  Google Scholar 

  26. Simon, P.: Investigations with respect to the Vilenkin system. Ann. Univ. Sci. Budapest. Eõtvõs Sect. Math. 27(1984), 87–101 (1985)

    Google Scholar 

  27. Simon, P.: Cesáro summability with respect to two-parameter Walsh systems. Monatsh. Math. 131(4), 321–334 (2000)

    Article  MathSciNet  Google Scholar 

  28. Simon, P., Weisz, F.: Weak inequalities for Cesáro and Riesz summability of Walsh–Fourier series. J. Approx. Theory 151(1), 1–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Szász, O.: On the logarithmic means of rearranged partial sums of a Fourier series. Bull. Amer. Math. Soc. 48, 705–711 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tephnadze, G.: The maximal operators of logarithmic means of one-dimensional Vilenkin–Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27(2), 245–256 (2011)

    MATH  MathSciNet  Google Scholar 

  31. Tephnadze, G.: Fejér means of Vilenkin-Fourier series. Studia Sci. Math. Hung. 49(1), 79–90 (2012)

    MATH  MathSciNet  Google Scholar 

  32. Tephnadze, G.: On the maximal operators of Vilenkin–Fejér means. Turkish J. Math. 37(2), 308–318 (2013)

    MATH  MathSciNet  Google Scholar 

  33. Tephnadze, G.: On the maximal operators of Riesz logarithmic means of Vilenkin–Fourier series. Studia Sci. Math. Hung. 51(1), 105–120 (2014)

    MATH  MathSciNet  Google Scholar 

  34. Tephnadze, G.: On the maximal operators of Walsh-Kaczmarz-Nörlund means, Acta Math. Acad. Paedagog. Nyházi. 30(1), (2014).

  35. Vilenkin, N.Y.: On a class of complete orthonormal systems. Amer. Math. Soc. Transl. 28(2), 1–3 (1963)

    MATH  MathSciNet  Google Scholar 

  36. Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier analysis. Lecture Notes in Mathematics. Springer-Verlag, Berlin (1994)

    Google Scholar 

  37. Weisz, F.: Hardy Spaces and Cesáro Means of Two-Dimensional Fourier Series, pp. 353–367. Approximation theory and function series, Budapest (1995)

    Google Scholar 

  38. Weisz, F.: Cesáro summability of one- and two-dimensional Walsh–Fourier series. Anal. Math. 22(3), 229–242 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Weisz, F.: \(\left( C,\alpha \right) \) summability of Walsh–Fourier series, summability of Walsh–Fourier series. Anal. Math. 27(2), 141–155 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Weisz, F.: Q-summability of Fourier series. Acta Math. Hung. 103(1–2), 139–175 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yabuta, K.: Quasi-Tauberian theorems, applied to the summability of Fourier series by Riesz’s logarithmic means. Tōhoku Math. J. 22(2), 117–129 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the careful referees for some good suggestions, which improved the final version of this paper. The research was supported by Shota Rustaveli National Science Foundation Grant No. 13/06 (Geometry of function spaces, interpolation and embedding theorems. The research was also supported by a Swedish Institute scholarship, provided within the framework of the SI Baltic Sea Region Cooperation/Visby Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-E. Persson.

Additional information

Communicated by Paul Butzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persson, LE., Tephnadze, G. & Wall, P. Maximal Operators of Vilenkin–Nörlund Means. J Fourier Anal Appl 21, 76–94 (2015). https://doi.org/10.1007/s00041-014-9345-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9345-2

Keywords

Mathematics Subject Classification

Navigation