Skip to main content
Log in

Ultra-High-Performance Magnetic Nonvolatile Level Converter Flip-Flop with Spin-Hall Assistance for Dual-Supply Systems with Power Gating Architecture

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, nonvolatile spintronic memory elements have drawn a lot of attention for designing nanoscale integrated circuit design due to their several advantages such as near-zero static power, high endurance, good scalability, and compatibility with the current process technologies. In this paper, a high-speed and low-power spintronic-based nonvolatile level converter flip-flop (NVLCFF) is proposed. This efficient design facilitates the use of power gating and dual-supply techniques simultaneously for ultra-energy-efficient integrated circuits. The proposed NVLCFF uses the spin Hall effect-assisted spin-transfer torque magnetic tunnel junction (SHE-assisted STT-MTJ) to provide nonvolatile data storage. Furthermore, a new voltage level converter is presented to perform voltage level conversion in the proposed NVLCFF. Elimination of the contention condition, using one reconfigurable MTJ, and no static voltage division in the proposed design lead to considerably higher speed and lower power. The 7-nm FinFET, as one of the leading industrial technologies, is utilized to design the peripheral circuity. The HSPICE simulation results show on average, 64%, 62%, and 35% improvements regarding the power dissipation, backup energy, and restore energy as compared to the other NVLCFFs. Furthermore, comprehensive Monte Carlo simulations demonstrate the robustness of the proposed design in the presence of process variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Ali, F. Li, S. Y. H. Lua and C. Heng, Compact spin transfer torque non-volatile flip flop design for power-gating architecture. 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Jeju, pp. 119-122 (2016). https://doi.org/10.1109/APCCAS.2016.7803911

  2. A. Amirany, M.H. Moaiyeri, K. Jafari, Process-in-memory using a magnetic-tunnel-junction synapse and a neuron based on a carbon nanotube field-effect transistor. IEEE Magnet. Lett. 10, 1–5 (2019). https://doi.org/10.1109/LMAG.2019.2958813

    Article  Google Scholar 

  3. A. Amirany, R. Rajaei, Fully nonvolatile and low power full adder based on spin transfer torque magnetic tunnel junction with spin-hall effect assistance. IEEE Trans. Magnet. 54(12), 1–7 (2018). https://doi.org/10.1109/TMAG.2018.2869811

    Article  Google Scholar 

  4. S. Angizi, Z. He, A. Awad, D. Fan, MRIMA: an MRAM-based in-memory accelerator. IEEE Trans. Comput. Aid. Des. Integr. Circuit. Syst. 39(5), 1123–1136 (2019). https://doi.org/10.1109/TCAD.2019.2907886

    Article  Google Scholar 

  5. S. Angizi, Z. He, A. Chen, D. Fan, Hybrid spin-CMOS polymorphic logic gate with application in in-memory computing. IEEE Trans. Magnet. 56(2), 1–15 (2020). https://doi.org/10.1109/TMAG.2019.2955626

    Article  Google Scholar 

  6. D. Chabi et al., Ultra low power magnetic flip-flop based on checkpointing/power gating and self-enable mechanisms. IEEE Trans. Circuit. Syst. I: Regul. Pap. 61(6), 1755–1765 (2014). https://doi.org/10.1109/TCSI.2013.2295026

    Article  Google Scholar 

  7. L.T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy, G. Yeric, ASAP7:A7-nm finFET predictive process design kit. Microelectron. J. 53, 105–115 (2016). https://doi.org/10.1016/j.mejo.2016.04.006

    Article  Google Scholar 

  8. Z. DavariShalamzari, A. DabbaghiZarandi, M.R. Reshadinezhad, Newly multiplexer-based quaternary half-adder and multiplier using CNTFETs. AEU Int. J. Electron. Commun. 117, 153128 (2020). https://doi.org/10.1016/j.aeue.2020.153128

    Article  Google Scholar 

  9. E. Deng et al., Synchronous 8-bit non-volatile full-adder based on spin transfer torque magnetic tunnel junction. IEEE Trans. Circuit. Syst. I Reg. Pap. 62(7), 1757–1765 (2015). https://doi.org/10.1109/TCSI.2015.2423751

    Article  Google Scholar 

  10. R. Dorrance, F. Ren, Y. Toriyama, A.A. Hafez, C.-K.K. Yang, D. Markovic, Scalability and design-space analysis of a 1 T-1 MTJ memory cell for STT-RAMs. IEEE Trans. Electron Dev. 59(4), 878–887 (2012). https://doi.org/10.1109/TED.2011.2182053

    Article  Google Scholar 

  11. E. Eken et al, Spin-hall assisted STT-RAM design and discussion, in 2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP), Austin, TX, pp. 1-4 (2016). https://doi.org/10.1145/2947357.2947360

  12. D. Esposito, D. De Caro, G. Di Meo, E. Napoli, A.G.M. Strollo, Low-power hardware implementation of least-mean-square adaptive filters using approximate arithmetic. Circuit. Syst. Signal Process. 38(12), 5606–5622 (2019). https://doi.org/10.1007/s00034-019-01132-y

    Article  Google Scholar 

  13. F. Ishihara, F. Sheikh, B. Nikolic, Level Conversion for Dual-Supply Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 12(2), 185-195 (2004). https://doi.org/10.1109/TVLSI.2003.821548

  14. A. Jaiswal, R. Andrawis, K. Roy, Area-efficient nonvolatile flip-flop based on spin hall effect. IEEE Magnet. Lett. 9, 1–4 (2018). https://doi.org/10.1109/LMAG.2018.2829676

    Article  Google Scholar 

  15. A.A. Javadi, M. Morsali, M.H. Moaiyeri, Magnetic nonvolatile flip-flops with spin-hall assistance for power gating in ternary systems. J. Comput. Electron. 19(3), 1175–1186 (2020). https://doi.org/10.1007/s10825-020-01516-3

    Article  Google Scholar 

  16. K.W. Kwon, S.H. Choday, Y. Kim, X. Fong, S.P. Park, K. Roy, SHE-NVFF: spin hall effect based nonvolatile flip-flop for power gating architecture. IEEE Electron Dev. Lett. 35(4), 488–490 (2014). https://doi.org/10.1109/LED.2014.2304683

    Article  Google Scholar 

  17. M. Lanuzza, P. Corsonello and S. Perri, Fast and wide range voltage conversion in multisupply voltage designs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(2), 388–391 (2015). https://doi.org/10.1109/TVLSI.2014.2308400

  18. E. Maghsoudloo, M. Rezaei, M. Sawan, B. Gosselin, A high-speed and ultra low-power subthreshold signal level shifter. IEEE Trans. Circuit. Syst. I Reg. Pap. 64(5), 1164–1172 (2017). https://doi.org/10.1109/TCSI.2016.2633430

    Article  Google Scholar 

  19. M. Morsali, M.H. Moaiyeri, NVLCFF: an energy-efficient magnetic nonvolatile level converter flip-flop for ultra-low-power design. Circuit. Syst. Signal Process. 39(6), 2841–2859 (2020). https://doi.org/10.1007/s00034-019-01309-5

    Article  Google Scholar 

  20. F. Razi, M.H. Moaiyeri, R. Rajaei, S. Mohammadi, A variation-aware ternary spin-hall assisted STT-RAM based on hybrid MTJ/GAA-CNTFET logic. IEEE Trans. Nanotechnol. 18(1), 598–605 (2019). https://doi.org/10.1109/TNANO.2019.2918198

    Article  Google Scholar 

  21. F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuit. Syst. I Reg. Pap. 66(11), 4200–4208 (2019). https://doi.org/10.1109/TCSI.2019.2918241

    Article  Google Scholar 

  22. Y. Seo, X. Fong, K. Roy, Fast and disturb-free nonvolatile flip-flop using complementary polarizer MTJ. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(4), 1573–1577 (2017). https://doi.org/10.1109/TVLSI.2016.2631981

  23. F. Sharifi, M.H. Moaiyeri, K. Navi, N. Bagherzadeh, Robust and energy-efficient carbon nanotube FET-based MVL gates: A novel design approach. Microelectron. J. 46(12), 1333–1342 (2015)

  24. Y. Shih et al., Logic process compatible 40-nm 16-Mb, embedded perpendicular-MRAM with hybrid-resistance reference, sub-µA sensing resolution, and 17.5-nS read access time. IEEE J. Solid-State Circuit. 54(4), 1029–1038 (2019). https://doi.org/10.1109/VLSIC.2018.8502260

  25. S. Shirinabadi Farahani, M. R. Reshadinezhad, A new twelve-transistor approximate 4: 2 compressor in CNTFET technology. Int. J. Electron. 106(5), 691–706 (2019). https://doi.org/10.1080/00207217.2018.1545930

  26. A. Udhayakumar, S. Padma, Low power magnetic non-volatile flip-flops with self-time logical writing for high-end processors. Circuit. Syst. Signal Process. 38(11), 4921–4932 (2019). https://doi.org/10.1007/s00034-019-01108-y

    Article  Google Scholar 

  27. Z. Wang, Compact modeling and circuit design based on ferroelectric tunnel junction and spin-Hall-assisted spin-transfer torque. Ph.D. Dissertation, University of Paris-Saclay, France, (2015)

  28. Z. Wang, W. Zhao, E. Deng, J. O. Klein, C. Chappert, Perpendicular-anisotropy magnetic tunnel junction switched by Spin-Hall-assisted spin-transfer torque. J. Phys. D Appl. Phys. 48(6), (2015). http://dx.doi.org/10.1088/0022-3727/48/6/065001

  29. C. Xu, Y. Zheng, D. Niu, X. Zhu, S.H. Kang, Y. Xie, Impact of write pulse and process variation on 22 nm FinFET-based STT-RAM design: a device-architecture co-optimization approach. IEEE Trans. Multi-Scale Comput. Syst. 1(4), 195–206 (2015). https://doi.org/10.1109/TMSCS.2015.2509960

    Article  Google Scholar 

  30. Y. Zhang, W. Zhao, Y. Lakys, J.O. Klein, J.V. Kim, D. Ravelosona, C. Chappert, Compact modeling of perpendicular-anisotropy CoFeB/MgO magnetic tunnel junctions. IEEE Trans. Electron Dev. 59(3), 819–826 (2012). https://doi.org/10.1109/TED.2011.2178416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Moaiyeri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsali, M., Moaiyeri, M.H. Ultra-High-Performance Magnetic Nonvolatile Level Converter Flip-Flop with Spin-Hall Assistance for Dual-Supply Systems with Power Gating Architecture. Circuits Syst Signal Process 40, 1383–1396 (2021). https://doi.org/10.1007/s00034-020-01532-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01532-5

Keywords

Navigation