Skip to main content
Log in

Fast Reconstruction of 3D Images Using Charlier Discrete Orthogonal Moments

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a new algorithm for accelerating the computation time of Charlier discrete orthogonal moments for three-dimensional (3D) images, based on two fundamental notions: The first is a new representation of 3D images called image cuboid representation (ICR) in which the 3D image is decomposed into a set of cuboids of the same gray level instead of voxels, enabling a considerable reduction in both the amount of treated voxels and the computation time of Charlier moments. The second is a matrix calculation of the Charlier moments instead of direct or recursive calculations. The significant reduction in the computation time for Charlier moments, in combination with the ICR method, motivated the development of this new method for 3D image reconstruction. Simulation results confirm the effectiveness of the proposed method in terms of the calculation time of 3D Charlier moments as well as the speed and quality of image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.H. Abdulhussain, A.R. Ramli, S.A.R. Al-Haddad, B.M. Mahmmod, W.A. Jassim, Fast recursive computation of Krawtchouk polynomials. J. Math. Imaging Vis. 60(3), 285–303 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. K.-H. Chang, R. Paramesran, B. Honarvar, C.-L. Lim, Efficient hardware accelerators for the computation of Tchebichef moments. IEEE Trans. Circuits Syst. Video Technol. 22(3), 414–425 (2012)

    Article  Google Scholar 

  3. S. Farokhi, U.U. Sheikh, J. Flusser, B. Yang, Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci. 316, 234–245 (2015)

    Article  Google Scholar 

  4. J. Flusser, T. Suk, B. Zitova, 2D and 3D Image Analysis by Moments (Wiley, London, 2016)

    Book  MATH  Google Scholar 

  5. J. Flusser, T. Suk, Pattern recognition by affine moment invariants. Pattern Recognit. 26, 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  6. B. Fu, J.-Z. Zhou, Y.-H. Li, B. Peng, L.-Y. Liu, J.-Q. Wen, Novel recursive and symmetric algorithm of computing two kinds of orthogonal radial moments. Image Sci. J. 56(6), 333–341 (2008)

    Article  Google Scholar 

  7. M.S. Hickman, Geometric moments and their invariants. J. Math. Imaging Vis. 44(3), 223–235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J. Electron. Imaging 23(1), 013026 (2014)

    Article  MATH  Google Scholar 

  9. A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using novel set of Charlier moment invariants. WSEAS Trans. Signal Process 10(1), 156–167 (2014)

    MATH  Google Scholar 

  10. A. Hmimid, M. Sayyouri, H. Qjidaa, Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognit. 48, 509–521 (2015)

    Article  MATH  Google Scholar 

  11. B. Honarvar, R. Paramesran, C.-L. Lim, The fast-recursive computation of Tchebichef moment and its inverse transform based on Z-transform. Digit. Signal Process. 23(5), 1738–1746 (2013)

    Article  Google Scholar 

  12. B. Honarvar, J. Flusser, Fast computation of Krawtchouk moments. Inf. Sci. 288, 73–86 (2014)

    Article  MATH  Google Scholar 

  13. K.M. Hosny, Image representation using accurate orthogonal Gegenbauer moments. Pattern Recognit. Lett. 32(6), 795–804 (2011)

    Article  Google Scholar 

  14. K.M. Hosny, Fast computation of accurate Gaussian–Hermite moments for image processing applications. Digit. Signal Proc. 22(3), 476–485 (2012)

    Article  MathSciNet  Google Scholar 

  15. M.-K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  16. http://www.cim.mcgill.ca/~shape/benchMark/airplane.html. (2017). Accessed 31 July 2017

  17. T. Jahid, A. Hmimid, H. Karmouni, M. Sayyouri, H. Qjidaa, A. Rezzouk, Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77(15), 19811–19831 (2017)

    Article  MATH  Google Scholar 

  18. A.K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, 1989)

    MATH  Google Scholar 

  19. H. Karmouni, A. Hmimid, T. Jahid, M. Sayyouri, H. Qjidaa, A. Rezzouk, Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process. (2018). https://doi.org/10.1007/s00034-018-0755-2

    MATH  Google Scholar 

  20. M.K. Mandal, T. Aboulnasr, S. Panchanathan, Image indexing using moments and wavelets. IEEE Trans. Consum. Electron. 42(3), 557–565 (1996)

    Article  Google Scholar 

  21. A.F. Nikiforov, S.K. Suslov, B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  22. G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis, Efficient and accurate computation of geometric moments on gray–scale images. Pattern Recognit. 41(6), 1895–1904 (2008)

    Article  MATH  Google Scholar 

  23. G.A. Papakostas, D.E. Koulouriotis, E.G. Karakasis, A unified methodology for the efficient computation of discrete orthogonal image moments. Inf. Sci. 179, 3619–3633 (2009)

    Article  MathSciNet  Google Scholar 

  24. H. Rahmalan, N.A. Abu, S.L. Wong, Using Tchebichef moment for fast and efficient image compression. Pattern Recognit. Image Anal. 20, 505–512 (2010)

    Article  Google Scholar 

  25. M. Sayyouri, A. Hmimid, H. Qjidaa, Improving the performance of image classification by Hahn moment invariants. JOSA A 30(11), 2381–2394 (2013)

    Article  MATH  Google Scholar 

  26. M. Sayyouri, A. Hmimid, H. Qjidaa, A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst. Signal Process. 34(3), 875–900 (2015)

    Article  MATH  Google Scholar 

  27. M. Sayyouri, A. Hmimid, H. Qjidaa, Image analysis using separable discrete moments of Charlier–Hahn. Multimed. Tools Appl. 75(1), 547–571 (2016)

    Article  MATH  Google Scholar 

  28. H. Shu, H. Zhang, B. Chen, P. Haigron, L. Luo, Fast computation of Tchebichef moments for binary and grayscale images. IEEE Trans. Image Process. 19(12), 3171–3180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. I.M. Spiliotis, B.G. Mertzios, Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7(11), 1609–1615 (1998)

    Article  Google Scholar 

  30. M.R. Teague, Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  31. E.D. Tsougenis, G.A. Papakostas, D.E. Koulouriotis, Image watermarking via separable moments. Multimed. Tools Appl. 74, 3985–4012 (2015)

    Article  Google Scholar 

  32. R. Upneja, C. Singh, Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recognit. 48(5), 1836–1843 (2015)

    Article  MATH  Google Scholar 

  33. G. Wang, S. Wang, Recursive computation of Tchebichef moment and its inverse transform. Pattern Recognit. 39(1), 47–56 (2006)

    Article  Google Scholar 

  34. C.-Y. Wee, R. Paramesran, Derivation of blur-invariant features using orthogonal Legendre moments. IET Comput. Vis. 1(2), 66–77 (2007)

    Article  MathSciNet  Google Scholar 

  35. H. Wu, J.L. Coatrieux, H. Shu, New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math. Probl. Eng. 2013, 813606 (2013)

    MathSciNet  Google Scholar 

  36. H. Wu, S. Yan, Bivariate Hahn moments for image reconstruction. Int. J. Appl. Math. Comput. Sci. 24(2), 417–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. P.-T. Yap, R. Paramesran, S.-H. Ong, Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)

    Article  Google Scholar 

  38. L. Zhang, W.-W. Xiao, Z. Ji, Local affine transform invariant image watermarking by Krawtchouk moment invariants. IET Inf. Secur. 1(3), 97–105 (2007)

    Article  Google Scholar 

  39. H. Zhang, H. Shu, G.-N. Han, G. Coatrieux, L. Luo, J.L. Coatrieux, Blurred image recognition by Legendre moment invariants. IEEE Trans. Image Process. 19(3), 596–611 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Zhu, M. Liu, H. Ji, Y. Li, Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal. Appl. 3(13), 309–319 (2010)

    Article  MathSciNet  Google Scholar 

  41. H. Zhu, Image representation using separable two-dimensional continuous and discrete orthogonal moments. Pattern Recognit. 45, 1540–1558 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from Moroccan pole of Competence STIC (Science and Technology of Information and Communication). We also thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Karmouni.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmouni, H., Jahid, T., Sayyouri, M. et al. Fast Reconstruction of 3D Images Using Charlier Discrete Orthogonal Moments. Circuits Syst Signal Process 38, 3715–3742 (2019). https://doi.org/10.1007/s00034-019-01025-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01025-0

Keywords

Navigation