Skip to main content
Log in

Image analysis by Meixner moments and a digital filter

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method for the rapid calculation of Meixner’s discrete orthogonal moments and its inverses. In this method, we have used the notion of digital filters based on the Z transform both to accelerate the computation time of Meixner and to reduce the reconstruction error of the images. To guarantee the numerical stability and robustness with respect to the noise, we propose two algorithms that treat the images as a set of blocks where each block will be treated independently. In fact, through the first algorithm, the moments of Meixner are computed from a set of geometric blocks of fixed size. On the other hand, in the second algorithm, the images are represented by a slice set where each slice contains several homogeneous blocks of different sizes. The moments of Meixner, in this case, are calculated from each block in each slice. The application of these two algorithms allowed us to deduce a significant reduction in processed information and image space, that permits the use of Meixner moments of low order for a better description of the fine details of the images. The performances of the proposed method are demonstrated through several simulations on different image bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abu NA, Wong SL, Rahmalan H, Sahib S (2010) Fast and efficient 4 × 4 Tchebichef moment image compression. Majlesi J Electr Eng 4(3):37–45(9)

    Google Scholar 

  2. El Fadili H, Zenkouar K, Qjidaa H (2003) Lapped block image analysis via the method of legendre moments. EURASIP J Appl Signal Process 2003(9):902–913

    Google Scholar 

  3. Flusser J, Suk T, Zitová B (2009) Moments and moment invariants in pattern recognition. Wiley, Chichester

    Book  MATH  Google Scholar 

  4. Hatamian M (1986) A real-time two-dimensional moment generating algorithm and its single chip implementation. IEEE Trans Acoust Speech Signal Process 34(3):546–553

    Article  Google Scholar 

  5. Hmimid A, Sayyouri M, Qjidaa H (2014) Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J Electron Imaging 23(1):013026

    Article  MATH  Google Scholar 

  6. Hmimid A, Sayyouri M, Qjidaa H (2015) Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn 48:509–521

    Article  MATH  Google Scholar 

  7. Honarvar B, Flusser J (2014) Fast computation of Krawtchouk moments. Inf Sci 288(20):73–86

    Article  MATH  Google Scholar 

  8. Honarvar B, Paramesran R (2014) A new formulation of geometric moments from lower output values of digital filters. J Circ Syst Comput 23:1450055

    Article  Google Scholar 

  9. Honarvar B, Paramesran R, Lim C-L (2013) The fast recursive computation of Tchebichef moment and its inverse transform based on Z-transform. Digital Signal Process 23(5):1738–1746

    Article  Google Scholar 

  10. Hsu HS (1993) Moment preserving edge detection and its application to image data compression. Opt Eng 32:1596–1608

    Article  Google Scholar 

  11. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inform Theory 8(2):179–187

    Article  MATH  Google Scholar 

  12. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015, July) Action2Activity: recognizing complex activities from sensor data. In: IJCAI pp 1617–1623. http://repository.um.edu.my/40526/

  13. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  14. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016, February) Recognizing complex activities by a probabilistic interval-based model. In: AAAI vol. 30, pp 1266–1272. https://arxiv.org/abs/1611.01872

  15. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12021

  16. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multitask multi-view learning. IJCAI. https://www.ijcai.org/Proceedings/16/Papers/366.pdf

  17. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  MATH  Google Scholar 

  18. Papakostas GA, Karakasis EG, Koulouriotis DE (2010) Accurate and speedy computation of image Legendre moments for computer vision applications. Image Vis Comput 28(3):414–423

    Article  Google Scholar 

  19. Preoţiuc-Pietro D, Liu Y, Hopkins D, Ungar L (2017) Beyond binary labels: political ideology prediction of Twitter users. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) vol. 1, pp 729–740

  20. Sayyouri M, Hmimid A, Qjidaa H (2013) Image analysis using separable discrete moments of Charlier-Hahn. Multimed Tool Appl 75(1):547–571

    Article  MATH  Google Scholar 

  21. Sayyouri M, Hmimid A, Qjidaa H A fast computation of novel set of meixner invariant moments for image analysis. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-014-9881-7

  22. Spiliotis IM, Mertzios BG (1998) Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans Image Process 7(11):1609–1615

    Article  Google Scholar 

  23. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    Article  MathSciNet  Google Scholar 

  24. Wang G, Wang S (2006) Recursive computation of Tchebichef moment and its inverse transform. Pattern Recogn 39(1):47–56

    Article  Google Scholar 

  25. Wang XY, Niu PP, Yang HY, Wang CP, Wang AL (2014) A new robust color image watermarking using local quaternion exponent moments. Inf Sci 277(0):731–754

    Article  Google Scholar 

  26. Wong W-H, Siu W-C (1999) Improved digital filter structure for fast moments computation. IEE Proc – Vis Image Signal Process 146(2):73–79

    Article  Google Scholar 

  27. Yap PT, Paramesran R, Ong SH (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377

    Article  MathSciNet  Google Scholar 

  28. Yap PT, Raveendran P, Ong SH (2007) Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Int 29(11):2057–2062

    Article  Google Scholar 

  29. Zhu H, Liu M, Shu H, Zhang H, Luo L (2010) General form for obtaining discrete orthogonal moments. IET Image Process 4(5):335–352

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Jahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahid, T., Hmimid, A., Karmouni, H. et al. Image analysis by Meixner moments and a digital filter. Multimed Tools Appl 77, 19811–19831 (2018). https://doi.org/10.1007/s11042-017-5371-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5371-9

Keywords

Navigation