Skip to main content
Log in

Dual-Output Operational Transconductance Amplifier-Based Electronically Controllable Memristance Simulator Circuit

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new floating analog memristance simulator circuit based on dual-output operational transconductance amplifiers (DO-OTA) and passive elements is proposed. Theoretical derivations are presented which describe the circuit characteristics. DO-OTA active elements in the proposed circuit are realized with CMOS transistors, and PSPICE simulations are performed. Also workability of the circuit is tested experimentally by using commercially available integrated circuits. Theoretical derivations are validated with PSPICE simulation and experimental results. All results show that proposed simulator circuit provides frequency-dependent pinched hysteresis loop and nonvolatility feature. Exciting frequency, minimum and maximum memristance values and memristance range can be adjustable electronically with bias currents by changing the transconductances of DO-OTAs. Simulator circuit has a frequency range of 1 Hz–180 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.T. Abuelmaatti, Z.J. Khalifa, A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integr. Circuits Signal Process. 86(1), 141–147 (2016)

    Article  Google Scholar 

  2. S.P. Adhikari, MPd Sah, H. Kim, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  3. A.G. Alharbi, M.E. Fouda, Z.J. Khalifa, M.H. Cowdhury, in 2016 IEEE 59th International Midwest Symposium on Simple Generic Memristor Emulator for Voltage-Controlled Models, Circuits and Systems (MWSCAS) (2016), pp. 1558–3899

  4. A.G. Alharbi, M.E. Fouda, M.H. Cowdhury, A novel flux-controlled memristive emulator for analog applications, advances in memristors, memristive devices and systems. Stud. Comput. Intell. 701, 493–511 (2017)

    Google Scholar 

  5. A.G. Alharbi, M.E. Fouda, Z.J. Khalifa, M.H. Cowdhury, Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5, 5399–5409 (2017)

    Article  Google Scholar 

  6. Z.G. Cam, H. Sedef, A new floating memristance simulator circuit based on second generation current conveyor. J. Circuits Syst. Comput. 26(2), 1750029 (2017)

    Article  Google Scholar 

  7. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  8. Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009)

    Article  MATH  Google Scholar 

  9. K. Kaewdang, W. Surakampontorn, On the realization of electronically current-tunable CMOS OTA. AEU Int. J. Electron. Commun. 61, 300–306 (2007)

    Article  Google Scholar 

  10. H. Kim, MPd Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012)

    Article  MathSciNet  Google Scholar 

  11. I. Koymen, E.M. Drakakis, in 14th International Workshop on CMOS-Based Nanopower Memristor Dynamics Emulator, Cellular Nanoscale Networks and Their Applications (CNNA) (2014)

  12. V.H. Nguyen, K.Y. Sohn, H. Song, On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale TiO2 thin-film memristor device. J. Comput. Electron. 15(3), 993–1002 (2016)

    Article  Google Scholar 

  13. H. Sozen, U. Cam, Electronically tunable memristor emulator circuit. Analog Integr. Circuits Signal Process. 89(3), 655–663 (2016)

    Article  Google Scholar 

  14. D.B. Strukov, G.S. Snider, D.R. Stewart, S.R. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  15. Texas Instruments, LM13700 dual operational transconductance amplifiers with linearizing diodes and buffers. LM13700 datasheet, Rev. F. (2015)

  16. Texas Instruments, Low cost analog multiplier. AD633 datasheet, Rev. K. (2016)

  17. L. Wei, W. Fa-Qiang, M. Xi-Kui, Exponential flux-controlled memristor model and its floating emulator. Chin. Phys. B 24(11), 118401 (2015)

    Article  Google Scholar 

  18. C. Yang, H. Choi, S. Park, M.P. Sah, H. Kim, L.O. Chua, A memristor emulator as a replacement of a real memristor. Semicond. Sci. Technol. 30(1), 015007 (2015)

    Article  Google Scholar 

  19. C. Yener, H.H. Kuntman, Fully CMOS memristor based chaotic circuit. Radioengineering 23(4), 1140–1149 (2014)

    Google Scholar 

  20. A. Yesil, Y. Babacan, F. Kacar, A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Gulru Cam Taskiran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cam Taskiran, Z.G., Ayten, U.E. & Sedef, H. Dual-Output Operational Transconductance Amplifier-Based Electronically Controllable Memristance Simulator Circuit. Circuits Syst Signal Process 38, 26–40 (2019). https://doi.org/10.1007/s00034-018-0856-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0856-y

Keywords

Navigation