Skip to main content
Log in

On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale \(\mathrm{TiO}_2\) thin-film memristor device

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Since real memristor devices are still not commercially available to most researchers, modeling a memristor is an effective method to explore its properties. In this paper, a flux-controlled memristor emulator circuit that can correctly mimic the memristive behavior of a real nanoscale \(\mathrm{TiO}_2\) thin-film memristor device is presented. The mathematical equations for the proposed emulator are explicitly derived, and the design parameters for the circuit in which the emulator works as a passive memristor with positive memductance are discussed. In addition, the proposed emulator can produce various vi hysteretic behaviors by controlling the nonlinear polynomial cubic function between the flux and charge inside. The results from numerical simulations in PSpice and MATLAB, as well as the measured results from an implemented emulator circuit on a printed circuit board using off-the-shelf electronics components, demonstrate that a controllable emulator can actually be constructed. This study serves as a foundation for understanding and designing different emulators for nanoscale \(\mathrm{TiO}_2\) thin-film memristors at the laboratory level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory CT-18, 507–519 (1971)

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. Shraghian, K., Cho, K., Kavehel, O., Kang, S., Abbott, D., Kang, S.: Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19, 1407–1417 (2011)

    Article  Google Scholar 

  4. Ontobel, P., Robinett, W., Kuekes, P., Stewart, D., Straznicky, I., Williams, R.: Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20, 425204 (2009)

    Article  Google Scholar 

  5. Pershin, Y., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  6. Shin, S., Kim, K., Kang, S.: Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10, 266–274 (2011)

    Article  Google Scholar 

  7. Xia, Q., Robinett, W., Cumbie, M., Banerjee, N., Cardinali, T., Yang, J., Wu, W., Li, X., Tong, W., Strukov, D., et al.: Memristor CMOS hybrid integrated circuits for recongurable logic. Nano Lett. 9, 3640–3645 (2009)

    Article  Google Scholar 

  8. Shaltoot, A., Madian, A.: A Memristor based carry look ahead adder architectures. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 298–301 (2012)

  9. Zidan, M.A., Omran, H., Radwan, A.G., Salam, K.N.: Memristor-based reactance-less oscillator. Electron. Lett. 47, 1220–1221 (2011)

    Article  Google Scholar 

  10. Fouda, M.E., Khatib, M., Mosad, A., Radwan, A.: Generalized analysis of symmetric and asymmetric Memristive two-gate relaxation oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 2701–2708 (2013)

    Article  MathSciNet  Google Scholar 

  11. Fouda, M., Radwan, A.: Memristor-based voltage controlled relaxation oscillators. Int. J. Circuit Theor. Appl. 42, 1092–1102 (2014)

    Article  Google Scholar 

  12. Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A gallery of chaotic oscillators based on HP memristor. Int. J. Bifurc. Chaos 23, 1330015 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  Google Scholar 

  14. McDonald, N.R., Pino, R.E., Rozwood, P.J., Wysocki, B.T.: Analysis of dynamic linear and non-linear mem ristor device models for emerging neuromorphic computing hardware design. International Joint Conference on Neural networks (IJCNN), pp. 1–5 (2010)

  15. Biolek, Z., Biolek, D., Biolkov, V.: SPICE model of memristor with nonlinear dopant drift. Radio Eng. 18, 210–214 (2009)

    Google Scholar 

  16. Benderli, S., Wey, T.A.: On SPICE macromodelling of TiO2 memristors. Electron. Lett. 45, 377–379 (2009)

    Article  Google Scholar 

  17. Pershin, Y.V., Di Ventra, M.: SPICE model of memristive devices with threshold. Radio Eng. 22, 485–489 (2013)

    Google Scholar 

  18. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  19. Pershin, Y.V., Di Ventra, M.: Teaching memory circuit elements via experiment-based learning. IEEE Circuits Syst. Mag. 12, 64–74 (2012)

    Article  Google Scholar 

  20. Bush, S.: HP nano device implements memristor. Electron. Wkly. (2008). http://www.electronicsweekly.com/news/products/memory/hp-nano-device-implements-memristor-2008-05/

  21. Jo, K.H., Jung, C.M., Min, K.S., Kang, S.M.: Memristor models and circuits for controlling Process-VDD-Temperature variations. IEEE Trans. Nanotechnol. 6, 675–678 (2010)

    Google Scholar 

  22. Mutlu, R., Karakulak, E.: Emulator circuit of TiO\(_2\) memristor with linear dopant drift made using analog multiplier. In: Proceedings of 2010 National Conference on Electrical, Electronic, Computer Engineering (ELECO), pp. 380–384 (2010)

  23. Sodhi, A., Gandhi, G.: Circuit mimicking TiO2 memristor: a plug and play kit to understand the fourth passive element. Int. J. Bifurc. Chaos 20, 2537–2545 (2010)

    Article  Google Scholar 

  24. Fouda, M.E., Radwan, A.G.: Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48, 1454–1455 (2012)

    Article  Google Scholar 

  25. Wang, X.Y., Fitch, A.L., Iu, H.H.C., Qi, W.G.: Design of a memcapacitor emulator based on a memristor. Phys. Lett. A. 376, 394–399 (2012)

    Article  MATH  Google Scholar 

  26. Wang, X.Y., Fitch, A.L., Iu, H.H.C., Sreeram, V., Qi, W.G.: Implementation of an analogue model of a memristor based on a light dependent resistor. Chin. Phys B. 21, 108501 (2012)

    Article  Google Scholar 

  27. Shin, S.H., Choi, J.M., Cho, S., Min, K.S.: Small-area and compact CMOS emulator circuit for CMOS/nanoscale memristor co-design. Nanoscale Res. Lett. 8, 454 (2013)

    Article  Google Scholar 

  28. Sanchez-Lopez, C., Mendoza-Lopez, J., Carrasco Aguilar, M.A., Muniz-Montero, C.: A oating analog mem ristor emulator circuit. IEEE Trans. Circuits Syst. II Express Br. 61, 309–313 (2014)

    Article  Google Scholar 

  29. Yang, C., Choi, H., Park, S., Sah, M.P., Kim, H., Chua, L.O.: A memristor emulator as a replacement of a real memristor. Semicond. Sci. Technol. 30(19), 015007 (2015)

    Article  Google Scholar 

  30. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  31. Zhong, G.Q.: Implementation of Chuas circuit with a cubic nonlinearity. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 994 (1994)

    Google Scholar 

  32. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–224 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea (NRF-2014H1C1A1066686). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1D1A1A01057495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjung Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.H., Sohn, K.Y. & Song, H. On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale \(\mathrm{TiO}_2\) thin-film memristor device. J Comput Electron 15, 993–1002 (2016). https://doi.org/10.1007/s10825-016-0862-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0862-x

Keywords

Navigation