Skip to main content
Log in

Soliton and breather solutions of the higher-order modified Korteweg–de Vries equation with constants background

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The higher-order modified Korteweg–de Vries (mKdV) equation with constants background is revealed based on the Riemann–Hilbert problem (RHP). With the derivation of RHP, the one-soliton solution (oSS) and simple breather solution (sBS) of the higher-order mKdV equation are obtained for the first time. In addition, the dynamic behavior of the oSS and sBS were further discussed by some corresponding graphs with selecting appropriate parameters, which have not been studied in published works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure. Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  Google Scholar 

  4. Yu, S.J., Toda, K., Fukuyama, T.: N-soliton solutions to a (2+1)-dimensional integrable equation. J. Phys. A: Math. Gen. 31, 10181–10186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Iwao, M., Hirota, R.: Soliton solutions of a coupled modified KdV equations. J. Phys. Soc. Jpn. 66, 577–588 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Osman, M.S., Ghanbari, B., Machado, J.A.T.: New complex waves in nonlinear optics based on the complex Ginzburg–Landau equation with Kerr law nonlinearity. Eur. Phys. J. Plus 134, 20 (2019)

    Article  Google Scholar 

  7. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, Z.Q., Tian, S.F.: A hierarchy of nonlocal nonlinear evolution equations and Dbar-dressing method. Appl. Math. Lett. 120, 107254 (2021)

    Article  MATH  Google Scholar 

  9. Wang, Z.Y., Tian, S.F., Cheng, J.: The Dbar-dressing method and soliton solutions for the three-component coupled Hirota equations. J. Math. Phys. 62, 093510 (2021)

    Article  MATH  Google Scholar 

  10. Liu, N., Guo, B.L.: Painlevé-type asymptotics of an extended modified KdV equation in transition regions. J. Differ. Equ. 280, 203–235 (2021)

    Article  MATH  Google Scholar 

  11. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  12. Satsuma, J.: Higher conservation laws for the Korteweg–de Vries equation through Bäcklund transformation. Progr. Theor. Phys. 52(4), 1396–1397 (1974)

    Article  Google Scholar 

  13. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  14. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: The Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  16. Ablowitz, M.J., Biondini, G., Prinari, B.: Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions. Inverse Prob. 23, 1711–1758 (2007)

    Article  MATH  Google Scholar 

  17. Zhang, X.E., Chen, Y.: Inverse scattering transformation for generalized nonlinear Schrödinger equation. Appl. Math. Lett. 98, 306–313 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, W.X.: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 47, 1–17 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, G.Q., Yan, Z.Y.: Focusing and defocusing mKdV equations with nonzero boundary conditions: inverse scattering transforms and soliton interactions. Physica D 410, 132521 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Z.C., Fan, E.G.: Inverse scattering transform for the GerdjikovCIvanov equation with nonzero boundary conditions. Z. Angew. Math. Phys. 71, 149 (2020)

    Article  Google Scholar 

  21. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266(9), 5209–5253 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, N.: Soliton and breather solutions for a fifth-order modified KdV equation with a nonzero background. Appl. Math. Lett. 104, 106256 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, N., Guo, B.L.: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach. Nonlinear Dyn. 100(1), 629–646 (2020)

    Article  MATH  Google Scholar 

  24. Biondini, G., Kraus, D., Prinari, B.: The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    Article  MATH  Google Scholar 

  25. Zhang, Z.C., Fan, E.G.: Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov–Ivanov equation under the zero/nonzero background. Z. Angew. Math. Phys. 72, 153 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, X.F., Tian, S.F., Yang, J.J.: The Riemann–Hilbert approach for the focusing Hirota equation with single and double poles. Anal. Math. Phys. 11, 86 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Tian, S.F., Yang, J.J.: Riemann–Hilbert problem and interactions of solitons in the n-component nonlinear Schrodinger equations. Stud. Appl. Math. 148(2), 577–605 (2022)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Tian, S.F.: Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Commun. Pure Appl. Anal. 21(1), 293–313 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Li, Z., Tian, S., Yang, J.: Riemann–Hilbert approach and soliton solutions for the higher-order dispersive nonlinear Schrödinger equation with nonzero boundary conditions. arXiv:1911.01624v1 (2019)

  30. Zhang, G., Yan, Z.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Phys. D 402, 132170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao, Y., Fan, E.: Inverse scattering transformation for the Fokas–Lenells equation with nonzero boundary conditions. J. Nonlinear Math. Phys. 28(1), 38–52 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Biondini, G., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability. Commun. Pure Appl. Math. 70, 2300–2365 (2017)

    Article  MATH  Google Scholar 

  33. Liu, N., Chen, M.J., Guo, B.L.: Long-time asymptotic behavior of the fifth-order modified KdV equation in low regularity spaces. Stud. Appl. Math. 147(1), 230–299 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ito, M.: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Phys. Soc. Jpn. 49, 771–778 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Parkes, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A 295, 280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer Press, Berlin (2009)

    Book  MATH  Google Scholar 

  37. Chen, F., Zhang, H.Q.: Rogue waves on the periodic background in the higher-order modified Korteweg–de Vries equation. Mod. Phys. Lett. B 35(04), 2150081 (2021)

    Article  MathSciNet  Google Scholar 

  38. Chen, F., Zhang, H.Q.: Periodic travelling waves and rogue waves for the higher-order modified Korteweg–de Vries equation. Commun. Nonlinear. Sci. 97, 105767 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Biondini, G., Li, S., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions in the presence of a discrete spectrum. Commun. Math. Phys. 382, 1495–1577 (2021)

    Article  MATH  Google Scholar 

  40. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grava, T., Minakov, A.: On the long time asymptotic behaviour of the modified Korteweg de Vries equation with step-like initial data. SIAM J. Math. Anal. 52(6), 5892–5993 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. S. F. Tian for many valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jin Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, JJ., Xu, TZ. & Shi, LF. Soliton and breather solutions of the higher-order modified Korteweg–de Vries equation with constants background. Z. Angew. Math. Phys. 74, 78 (2023). https://doi.org/10.1007/s00033-023-01946-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01946-6

Keywords

Mathematics Subject Classification

Navigation