Skip to main content
Log in

Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot (D(u)\nabla u)-\nabla \cdot (S(u)\nabla v)+\mu (u-u^{2}),&(x,t)\in \Omega \times (0,\infty ), \\&v_t=\Delta v-vw,&(x,t)\in \Omega \times (0,\infty ), \\&w_t=-\delta w+u,&(x,t)\in \Omega \times (0,\infty ), \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset {\mathbb {R}}^{2}\), where \(\delta >0\) and \(\mu >0\), the nonlinear diffusivity D(u) and chemosensitivity S(u) are supposed to satisfy

$$\begin{aligned} D(u)\geqslant u^{m},\quad S(u)\leqslant u^{q}\quad \text {and}\quad D,S>0. \end{aligned}$$

When \(m>\max \{2q-3, 1\}\), we study the global boundedness of solutions for this problem. In the case of \(m=0\) and \(0<q<\frac{3}{2}\), we can obtain the boundedness of this system by using different methods. Moreover, under the particular conditions of \(m=0\) and \(q=1\), the global bounded solution (uvw) satisfies

$$\begin{aligned} \Vert u(\cdot ,t)-1\Vert _{L^{\infty }(\Omega )}+\Vert v(\cdot ,t)\Vert _{L^{\infty }(\Omega )}+\Vert w(\cdot ,t)-\frac{1}{\delta }\Vert _{L^{\infty }(\Omega )}\rightarrow 0 \end{aligned}$$

as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24, 4665–4684 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Fan, L., Jin, H.Y.: Global existence and asymptotic behavior to a chemotaxis system with consumption of chemoattractant in higher dimensions. J. Math. Phys. 58, 011503 (2017)

    Article  MathSciNet  Google Scholar 

  4. Feireisl, E., Laurencot, P., Petzeltovo, H.: On convergence to equilibria for the Keller-Segel chemotaxis model. J. Differ. Equ. 236, 551–569 (2010)

    Article  MathSciNet  Google Scholar 

  5. Fuest, M.: Analysis of a chemotaxis model with indirect signal absorption. J. Differ. Equ. 267, 4778–4806 (2019)

    Article  MathSciNet  Google Scholar 

  6. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nach. 195, 77–144 (1998)

    Article  Google Scholar 

  7. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann Scuo. Norm. Sup Pisa 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  9. Hu, B., Tao, Y.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    Article  MathSciNet  Google Scholar 

  10. Issa, T., Shen, W.: Pointwise persistence in full chemotaxis models with logistic source on bounded heterogeneous environments. arXiv:1909.09948v1 (2019)

  11. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  12. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence (1968)

  13. Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262, 4052–4084 (2017)

    Article  MathSciNet  Google Scholar 

  14. Lankeit, J.: Eventual smoothness and asymptotis in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    Article  Google Scholar 

  15. Liu, B., Dong, M.: Global solutions in a quasilinear parabolic-parabolic chemotaxis system with decaying diffusivity and consumption of a chemoattractant. J. Math. Anal. Appl. 467, 32–44 (2018)

    Article  MathSciNet  Google Scholar 

  16. Lorz, A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  Google Scholar 

  17. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funk. Ekva. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Nirenberg, L.: An extended interpolation inequality. Ann Scuo. Norm. Sup Pisa 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  19. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funk. Ekva. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Osaki, K., Yagi, A., Tsujikawa, T., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. TMA 51, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  21. Porzio, M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)

    Article  Google Scholar 

  22. Qiu, S., Mu, C., Wang, L.: Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production. Comput. Math. Appl. 75, 3213–3223 (2018)

    Article  MathSciNet  Google Scholar 

  23. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling muliscale cancer cell invasion. SIMA J. Math. Anal. 46, 1969–2007 (2014)

    Article  Google Scholar 

  24. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    Article  MathSciNet  Google Scholar 

  25. Winkler, M.: Global large-data solutions in a chemotaxis–Navier–Stokes system modeling cellular swimming in fluid drops. Commun. Part. Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  26. Winkler, M.: Stabilization in a two-dimensional chemotaxis–Navier–Stokes system. Arch. Rati. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  27. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system. Ann. Inst. Henri Poin. Nonl. Anal. 33, 1329–1352 (2016)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  29. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Part. Diff. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Aggregation versus global diffusion behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  Google Scholar 

  32. Zhang, W., Niu, P., Liu, S.: Large time behavior in chemotaixs model with logistic growth and indirecct signal production. Nonl. Anal. Real World Appl. 50, 484–497 (2019)

    Article  Google Scholar 

  33. Xing, J., Zheng, P.: Global boundedness and long-time behavior for a two-dimensional quasilinear chemotaxis system with indirect signal consumption, preprint

  34. Zhao, X., Zheng, S.: Asymptotic behavior to a chemotaxis consumption system with singular sensitivity. Math. Meth. Appl. Sci. 41, 2615–2624 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zheng, P., Mu, C., Willie, R., Hu, X.: Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity. Comput. Math. Appl. 75, 1667–1675 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zheng, P., Mu, C.: Global existence of solutions for a fully parabolic chemotaxis system with consumption of chemoattractant and logistic source. Math. Nach. 288, 710–720 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zheng, P., Mu, C., Hu, X.: Global dynamics for an attraction-repulsion chemotaxis–(Navier)–Stokes system with logistic source. Nonl. Anal. Real World Appl. 45, 557–580 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zheng, P., Mu, C., Wang, L., Li, L.: Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity. J. Evolut. Equ. 17, 909–929 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zheng, P., Willie, R., Mu, C.: Global boundedness and stabilization in a two-competing-species chemotaxis-fluid system with two chemicals, J. Dyn. Differ. Equ. https://doi.org/10.1007/s10884-019-09797-4

Download references

Acknowledgements

The authors would like to deeply thank the editor and reviewers for their insightful and constructive comments. This work is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 11526042, 11771062) and Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0082), South Africa-China Young Scientist Exchange Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Xing, J. Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption. Z. Angew. Math. Phys. 71, 98 (2020). https://doi.org/10.1007/s00033-020-01320-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01320-w

Keywords

Mathematics Subject Classification

Navigation